TY - JOUR A1 - Ghosh, Priyanka A1 - Renkwitz, Toralf A1 - Latteck, Ralph A1 - Avsarkisov, Victor A1 - Chau, Jorge L. T1 - Momentum Flux and Vertical Wind Power Spectral Characteristics in the Troposphere and Lower Stratosphere Over Andøya, Norway as Observed by MAARSY Y1 - 2023-04-25 VL - 50 IS - 8 SP - EP - JF - Geophysical Research Letters DO - 10.1029/2022GL101524 PB - N2 - Abstract

We used the tropospheric and lower stratospheric 3D winds for four consecutive years (2017–2020) to study the momentum flux (MF) and vertical wind power spectra (VWP) over Andøya, Norway (69.30°N, 16.04°E) using the Middle Atmosphere Alomar Radar System. The spectra range from 3.5 days−1 > f > 30 min−1, which are categorized in terms of observed/ground‐based frequency (as the local inertial period is 13 h over Andøya), height ranges, and seasons. Our results indicate for the first time that (a) both the zonal and meridional MF display peaks around the inertial period (13 h) in the troposphere (1.80–12.00 km) during all seasons (with some exceptions), while VWP exhibits such features in the whole height range (1.80–18.00 km), (b) the minimum variability in MF, VWP, and kinetic energy is observed during summer, and (c) both the MF and VWP demonstrate height variation with maximum deviations below the tropopause.

N2 - Plain Language Summary: The wind measurements are used to study the height and seasonal variation of momentum flux and vertical wind power spectra during 2017–2020. We report for the first time that both the momentum flux and vertical wind power spectra depict more variations in the tropospheric heights (around 1.80–7.20 km), below the tropopause, with the minimum amplitudes in the summer months (June–July–August). Moreover, long‐period oscillations have more energy than short‐period oscillations, and therefore, contribute more to the energy or flux transfer from the lower to the higher atmosphere. The month versus height profile of kinetic energy also portrays a similar feature with considerably more magnitude for the long‐period oscillations than the short‐period ones. The kinetic energy displays an enhancement of magnitude near the tropopause (∼5.00–10.00 km).

N2 - Key Points: The zonal and meridional momentum flux spectra exhibit a peak around the inertial period of 13 h in the troposphere (1.80–12.00 km). Height profiles of momentum flux, vertical wind power spectra, and kinetic energy display seasonal variation with a minimum during summer. The maximum variability of momentum flux and vertical wind power spectra is noticed below tropopause and decreases with increasing height. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10919 ER -