TY - JOUR A1 - de Vrese, Philipp A1 - Stacke, Tobias A1 - Caves Rugenstein, Jeremy A1 - Goodman, Jason A1 - Brovkin, Victor T1 - Snowfall-albedo feedbacks could have led to deglaciation of snowball Earth starting from mid-latitudes Y1 - 2021-05-14 VL - 2 IS - 1 JF - Communications Earth & Environment DO - 10.1038/s43247-021-00160-4 PB - Nature Publishing Group UK N2 - Simple and complex climate models suggest a hard snowball – a completely ice-covered planet – is one of the steady-states of Earth’s climate. However, a seemingly insurmountable challenge to the hard-snowball hypothesis lies in the difficulty in explaining how the planet could have exited the glaciated state within a realistic range of atmospheric carbon dioxide concentrations. Here, we use simulations with the Earth system model MPI-ESM to demonstrate that terminal deglaciation could have been triggered by high dust deposition fluxes. In these simulations, deglaciation is not initiated in the tropics, where a strong hydrological cycle constantly regenerates fresh snow at the surface, which limits the dust accumulation and snow aging, resulting in a high surface albedo. Instead, comparatively low precipitation rates in the mid-latitudes in combination with high maximum temperatures facilitate lower albedos and snow dynamics that – for extreme dust fluxes – trigger deglaciation even at present-day carbon dioxide levels. N2 - Snowball Earth could have thawed at atmospheric CO2-levels comparable to the present as a result of low surface albedo in mid-latitudes from a combination dust deposition and low precipitation rates, according to Earth System Model simulations UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/11140 ER -