TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Poetz, Stefanie A1 - Osterholz, Helena A1 - Sachse, Dirk T1 - Particulate Organic Matter Mobilization and Transformation Along a Himalayan River Revealed by ESI‐FT‐ICR‐MS Y1 - 2022-12-14 VL - 127 IS - 12 JF - Journal of Geophysical Research: Biogeosciences DO - 10.1029/2022JG007126 PB - N2 - Tracing pathways and transformations of particulate organic carbon from landscape sources to oceanic sinks is commonly done using the isotopic composition or biomarker content of particulate organic matter (POM). However, similarity of source characteristics and complex mixing in rivers often preclude a robust deconvolution of individual contributions. Moreover, these approaches are limited in detecting organic matter transformations. This impedes understanding of carbon cycling. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR‐MS) can simultaneously identify many molecular formulas from mixtures of organic matter, and provide direct information on its compositional variability. Here, we investigate how FT‐ICR‐MS can give insight into POM dynamics on a landscape scale, focusing on the trans‐Himalayan Kali Gandaki River, Nepal. Using molecular information, we identify source tracers in the solvent extractable lipid fraction of riverine POM, finding up to 102 indicative molecular formulas for individual sources. Further, we assess molecular transformations of the lipid fraction of POM during its transfer from litter into topsoil, and onwards into the river. A large number of shared mass formulas and a well‐preserved isoprenoidal patterns suggest efficient incorporation of litter into topsoil. In contrast, we observe a selective loss of mass formulas and a preferential export of formulas with low double bond equivalents and a low nominal oxidation state of carbon after organic matter entrainment in the river. Our results demonstrate the potential of FT‐ICR‐MS for source‐to‐sink studies, allowing detailed organic matter source characterization and discrimination, and tracking of molecular transformations along organic matter pathways spanning different spatial and temporal scales. N2 - Plain Language Summary: The transfer of organic matter (OM) by rivers from landscape sources into the ocean followed by its burial in marine sediments is an important carbon sink. Therefore, OM is often traced along this journey using its isotopic or biomarker composition. But contributions of OM sources to river sediments can be difficult to estimate because of similar source characteristics, mixing of many sources and changes of the molecular composition along the way. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR‐MS) is a novel method able to identify many molecular formulas from OM mixtures at once providing direct information about their molecular composition. Here, we investigate how FT‐ICR‐MS contributes to understanding the transport and transformation of particulate OM focusing on a Himalayan river in Nepal. We use the molecular information to identify tracers for individual OM sources in the landscape. We then assess molecular transformations during the transfer of litter into topsoil, and onwards into the river. Our data suggest efficient incorporation of litter into topsoil, but we observe a selective loss of molecular formulas upon entrainment of sources into the river. Our results reveal that FT‐ICR‐MS is useful for detailed source characterization and tracking of molecular transformations along OM pathways. N2 - Key Points: Organic matter sourcing and transformations in a Himalayan river studied by FT‐ICR‐MS measurements of solvent extractable lipids. Identification of up to 102 indicator mass formulas for different organic matter sources in the landscape using indicator species analysis. Mass formulas preserved during incorporation of litter into topsoil but selectively lost during entrainment of sources into the river. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/11396 ER -