TY - CPAPER A1 - Beiers, Sandra A1 - Hobiger, Manuel A1 - Spies, Thomas A1 - Thiel, Christine A1 - Goebel, Björn A1 - Geisler, Claudia T1 - Optimierung von Methoden zur Standortcharakterisierung anhand passiver seismischer Messungen am Beispiel der Weserterrassen bei Hameln Y1 - 2021 DO - 10.23689/fidgeo-3942 N2 - Passive seismische Messungen des Umgebungsrauschens sind effektive und nicht-invasive Methoden, um die Struktur des lokalen Untergrunds und mögliche Verstärkungen seismischer Bodenbewegungen zu ermitteln. Liegt beispielsweise Lockersediment auf Festgestein auf, so kann dies bei seismischen Ereignissen eine verstärkende Wirkung auf die seismische Beanspruchung darüberliegender Gebäude haben. Um einen ersten Überblick über den Standort zu bekommen, wird mithilfe von Einzelstationsmessungen die Fundamentalfrequenz, mit welcher der Untergrund schwingt, ermittelt (H/V-Kurven). Liegt diese in einem ähnlichen Bereich wie die Resonanzfrequenzen von Gebäuden (ca. 1 - 10 Hz) wirkt dies verstärkend, sodass auch seismische Ereignisse mit geringer Magnitude eine erhöhte Einwirkung in Bezug auf Fühlbarkeit und Schäden zur Folge haben. Des Weiteren werden zur Erstellung eines Geschwindigkeit-Tiefen-Profils mehrere Stationen zu einem Array kombiniert. Aus den gemessenen Daten werden mittels einer hochauflösenden Frequenz-Wellenzahl-Analyse (hrFK) und einer räumlichen Autokorrelation (SPAC) Dispersionskurven ermittelt, welche die Phasengeschwindigkeiten von Oberflächenwellen in Abhängigkeit der Frequenz angeben. Die resultierenden Dispersionskurven werden am Ende invertiert, um das Geschwindigkeits-Tiefen-Profil für den lokalen Untergrund zu erhalten. Insgesamt wurden auf den Flussterrassen der Weser drei Array-Messungen an unterschiedlichen Standorten, sowie mehrere H/V-Messungen durchgeführt. Ziel ist es, eine bestmögliche Strategie sowohl für die Vorgehensweise bei den Messungen, als auch für die Auswertung der Daten zu entwickeln und eine bessere Eingrenzung der Tiefenprofile der S-Wellengeschwindigkeiten zu erreichen. So wurde bei der Auswertung der Daten unter anderem eine Trennung in Love- und Rayleigh-Wellen vorgenommen, um die Geschwindigkeitsprofile besser bestimmen zu können. In Zukunft sind zudem Tests mit Variationen der Array-Geometrien geplant, um zukünftige Messungen hinsichtlich Logistik, Messdauer und Personaleinsatz zu optimieren. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8282 ER -