TY - JOUR A1 - Blöthe, Jan Henrik A1 - Halla, Christian A1 - Schwalbe, Ellen A1 - Bottegal, Estefania A1 - Trombotto Liaudat, Dario A1 - Schrott, Lothar T1 - Surface velocity fields of active rock glaciers and ice‐debris complexes in the Central Andes of Argentina Y1 - 2020-12-30 VL - 46 IS - 2 SP - 504 EP - 522 JF - Earth Surface Processes and Landforms DO - 10.23689/fidgeo-4023 N2 - Rock glaciers and transitional ice‐debris complexes predominate the Central Andean landform assemblage, yet regional studies on their state of activity and their kinematics remain sparse. Here we utilize the national glacier inventory of Argentina to quantify surface velocity fields of 244 rock glaciers and 51 ice‐debris complexes, located in the Cordón del Plata range, Argentina. Applying a feature‐tracking approach to repeated RapidEye satellite imagery acquired between 2010 and 2017/18, we find mean displacement rates between 0.37 and 2.61 m year−1 for 149 landforms, while for the remaining 146 features, surface movement remains below our level of detection. We compare our satellite‐derived velocity fields with ground‐truth data from two local field sites and find closely matching results in magnitude and spatial distribution. With average displacement of one‐third of the active rock glaciers and ice‐debris complexes exceeding 1 m year−1, the region hosts an exceptional number of fast‐flowing periglacial landforms, compared to other mountain belts. Using a random forest model, we test the predictive power of 25 morphometric and topoclimatic candidate predictors for modelling the state of activity of rock glaciers and ice‐debris complexes on two different scales. For entire landforms and individual landform segments, constructed along displacement centrelines, we can predict the state of activity with overall accuracies of 70.08% (mean AUROC = 0.785) and 74.86% (mean AUROC = 0.753), respectively. While topoclimatic parameters such as solar radiation and elevation are most important for entire landforms, geometric parameters become more important at the scale of landform segments. Despite tentative correlations between local slope and surface kinematics, our results point to factors integrating slope and distance to the source to govern local deformation. We conclude that feature tracking in optical imagery is feasible for regional studies in remote regions and provides valuable insight into the current state of the Andean cryosphere. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd N2 - Our study quantifies the surface kinematics of 295 rock glaciers and ice‐debris complexes in the Central Andes using feature tracking in optical satellite imagery. We find nearly half of these are actively moving, with high average rates between 0.38 and 2.36 m year−1. Using a random forest modelling approach, we find topoclimatic predictors to have the highest importance for predicting the state of activity of entire landforms, while geometric predictors become more important on the scale of individual landform segments. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8363 ER -