TY - JOUR A1 - Morgenstern, Anne A1 - Overduin, Pier Paul A1 - Günther, Frank A1 - Stettner, Samuel A1 - Ramage, Justine A1 - Schirrmeister, Lutz A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermo‐erosional valleys in Siberian ice‐rich permafrost Y1 - 2020-10-28 VL - 32 IS - 1 SP - 59 EP - 75 JF - Permafrost and Periglacial Processes DO - 10.1002/ppp.2087 DO - 10.23689/fidgeo-4083 N2 - Thermal erosion is a major mechanism of permafrost degradation, resulting in characteristic landforms. We inventory thermo‐erosional valleys in ice‐rich coastal lowlands adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information System (GIS), and field investigations for a first regional assessment of their spatial distribution and characteristics. Three study areas with similar geological (Yedoma Ice Complex) but diverse geomorphological conditions vary in valley areal extent, incision depth, and branching geometry. The most extensive valley networks are incised deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat, low‐lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst and characterized by long valleys of lower depth with short tributaries. Small, isolated Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter but deep valleys. Based on these hydrographical network and topography assessments, we discuss geomorphological and hydrological connections to erosion processes. Relative catchment size along with regional slope interact with other Holocene relief‐forming processes such as thermokarst and neotectonics. Our findings suggest that thermo‐erosional valleys are prominent, hitherto overlooked permafrost degradation landforms that add to impacts on biogeochemical cycling, sediment transport, and hydrology in the degrading Siberian Yedoma Ice Complex. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8423 ER -