TY - JOUR A1 - Martuganova, Evgeniia A1 - Stiller, Manfred A1 - Bauer, Klaus A1 - Henninges, Jan A1 - Krawczyk, Charlotte M. T1 - Cable reverberations during wireline distributed acoustic sensing measurements: their nature and methods for elimination Y1 - 2021-05-16 VL - 69 IS - 5 SP - 1034 EP - 1054 JF - Geophysical Prospecting DO - 10.23689/fidgeo-4255 N2 - The application of distributed acoustic sensing in borehole measurements allows for the use of fibre optic cables to measure strain. This is more efficient in terms of time and costs compared with the deploying of conventional borehole seismometers. Nevertheless, one known drawback for temporary deployment is represented by the freely hanging wireline cable slapping and ringing inside the casing, which introduces additional coherent coupling noise to the data. The present study proposes an explanation for the mechanism of noise generation and draws an analogy with similar wave propagation processes and phenomena, such as ghost waves in marine seismics. This observation allows to derive a ringing noise filter function, to study its behaviour and to consider known effects of the gauge length filter. After examining existing methods aimed at eliminating ringing noise and results of their application, we propose a two‐step approach: (1) developing a denoising method based on a matching pursuit decomposition with Gabor atoms and (2) subtracting the noise model for imaging improvement. The matching pursuit method focuses on decomposing the original input signal into a weighted sum of Gabor functions. Analysing Gabor atoms properties for frequency, amplitude and position in time provides the opportunity to distinguish parts of the original signal denoting noise caused by the vibrating cable. The matching pursuit decomposition applied to the distributed acoustic sensing‐vertical seismic profiling data at the geothermal test site Groß Schönebeck provides a versatile processing instrument for noise suppression. UR - http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/8601 ER -