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Abstract Sea ice dynamics determine the drift and deformation of sea ice. Nonlinear physics, usually
expressed in a viscous-plastic rheology, makes the sea ice momentum equations notoriously difficult to
solve. At increasing sea ice model resolution the nonlinearities become stronger as linear kinematic
features (leads) appear in the solutions. Even the standard elastic-viscous-plastic (EVP) solver for sea ice
dynamics, which was introduced for computational efficiency, becomes computationally very expensive,
when accurate solutions are required, because the numerical stability requires very short, and hence more,
subcycling time steps at high resolution. Simple modifications to the EVP solver have been shown to
remove the influence of the number of subcycles on the numerical stability. At low resolution appropriate
solutions can be obtained with only partial convergence based on a significantly reduced number of
subcycles as long as the numerical procedure is kept stable. This previous result is extended to high
resolution where linear kinematic features start to appear. The computational cost can be strongly reduced
in Arctic Ocean simulations with a grid spacing of 4.5 km by using modified and adaptive EVP versions
because fewer subcycles are required to simulate sea ice fields with the same characteristics as with the
standard EVP.

1. Introduction
Most sea ice models use a viscous-plastic (VP) rheology (Hibler, 1979) to describe internal stresses in the
sea ice pack. This entails numerical difficulties related to the stiff character of the corresponding momen-
tum equations so that explicit solution methods are unacceptably expensive. There are two strategies to
overcome these difficulties. One resorts to implicit methods, requiring numerical solvers. Implicit methods
range from approximate solutions where only a few Picard iterations are performed (Zhang & Hibler, 1997),
to sophisticated solvers, such as the Jacobian-free Newton-Krylov (JFNK) solver (Lemieux et al., 2012; Losch
et al., 2014), which ensure numerical convergence of solutions to the dynamical equations. In practice, how-
ever, the JFNK solver is still computationally expensive and up to now rather serves as a tool for providing
reference solutions of the dynamical sea ice equations.

The other strategy is to add pseudoelasticity to the governing VP equations (see Appendix A1 for a list of
relevant equations). This makes the dynamical equations second order with respect to time and reduces time
step limitations. This so-called elastic-viscous-plastic (EVP) method (Hunke & Dukowicz, 1997) is widely
used in numerical climate modeling.

The applicability of the VP rheology for the representation of sea ice, especially at high resolution, is crit-
icized in the literature since it uses many assumptions that do not have observational evidence (see, e.g.,
Coon et al., 2007; Rampal et al., 2008; Weiss et al., 2007). Many modifications of the VP rheology that should
better reflect some of the properties of sea ice were suggested (e.g., Hibler & Schulson, 2000; Tremblay &
Mysak, 1997; Tsamados et al., 2013; Zhang & Rothrock, 2005). More fundamentally different rheologies are
also in development (Dansereau et al., 2016; Girard et al., 2011; Rampal et al., 2016), as are discontinuous
discrete element approaches which resolve individual floes (e.g., Herman, 2011; Hopkins, 2004; Wilchinsky
& Feltham, 2012). A more detailed list of new approaches to model sea ice dynamics can be found in
Ringeisen et al. (2019).
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Figure 1. Throughput for FESOM2 simulations on a global mesh with
4.5-km Arctic Ocean with different values of NEVP in the sEVP solver on
1,728 cores of a Cray CS400 with Intel® Xeon® Broadwell E5-2697 2.3-GHz
18-core CPUs (blues line) and percent of ocean time step required to
calculate sea ice time step for different values of NEVP (red line).

Still, most of the climate models participating in Coupled Model Inter-
comparison Project use some form of VP rheology and most often in
its EVP form (Stroeve et al., 2014). Reasons include the relatively good
performance when compared to observations, even in high-resolution
configurations with up to 1-km grid spacing (Bouchat & Tremblay, 2017;
Hutter et al., 2018; Spreen et al., 2017; Wang, Danilov, et al., 2016), and
better computational performance when compared to other attempts to
simulate sea ice on the global scale. In practice, this means that EVP will
continue to be used widely for climate research for the next several years
before better alternatives in terms of both computational performance
and comparison to observations are developed.

Because EVP method is explicit in time, it requires subcycling within the
external time step of the sea ice or ocean circulation model. The number
of subcycles (NEVP) depends on the grid resolution (Hunke & Dukowicz,
1997). From stability analysis it becomes clear that NEVP can reach sev-
eral hundreds at high resolution. With very high resolution on the order
of 1 km, sea ice dynamics can become as expensive as the entire ocean

model (Figure 1). Too small NEVP may lead to numerical noise (see, e.g., Bouillon et al., 2013; Lemieux et al.,
2012; Losch & Danilov, 2012), which changes the structure of the simulated ice distribution (see, e.g., Wang,
Danilov, et al., 2016). Furthermore, even though EVP was designed to do so, EVP solutions were found to
generally not converge to a VP solution (Lemieux et al., 2012; Losch & Danilov, 2012; Losch et al., 2010).

In recognizing especially the last point, Lemieux et al. (2012) and later Bouillon et al. (2013), Kimmritz
et al. (2015) reformulated EVP as a pseudo time iterative process that guarantees convergence to the VP
solution by construction. Importantly, the new procedure separates the issue of numerical stability from
the number of subcycles NEVP. The latter is still responsible for the degree of convergence, whereas the
numerical stability is governed only by two parameters 𝛼 and 𝛽 (see Appendix A4 for definitions). A careful
analysis of numerical stability and convergence properties of the scheme (Kimmritz et al., 2015) lead to a
further modification where the stability is taken into account in an automatic, adaptive way (Kimmritz et al.,
2016). Following the terminology of Kimmritz et al. (2016), the “revised” approach with constant 𝛼 and 𝛽

(Bouillon et al., 2013) will be referred to as mEVP (“m” for modified) and its adaptive version as aEVP.

The performance of mEVP and aEVP was compared to that of a JFNK solver in a realistic Arctic configura-
tion on a mesh with a resolution of approximately 27 km (Kimmritz et al., 2017). Both algorithms produced
results very similar to that simulated by the JFNK solver, except in the marginal ice zone where the sea ice
is in free drift and the solver characteristics are not important and where advective processes and ice-ocean
feedbacks make the system more chaotic. It was found that both mEVP and aEVP solvers work reasonably
well with much lower NEVP than recommended for the traditional EVP solver (e.g., the CICE manual rec-
ommends 120 subcycles, Hunke et al., 2018). The distributions of ice thickness and strain rates simulated
with NEVP equal to 50 and 250 remain rather close to each other and deviate little from the JFNK result. The
value of NEVP = 250 satisfies the formal condition for convergence since it is close to the stability parameters
𝛼 and 𝛽, but NEVP = 50 is formally too small to ensure convergence within the external time step. Because
each EVP iteration is started from the result of the previous time step, however, this number proves to be
sufficient to maintain convergence through the integration, presumably achieved gradually on a long time
scale. This finding opens a perspective to reduce the numerical cost substantially if mEVP solver or aEVP
solver is used in place of EVP (Kimmritz et al., 2017).

Sea ice thickness and concentration simulated at 27-km resolution are smooth. VP sea ice dynamics start to
reveal multiple linear kinematic features (LKFs; leads or openings) as the grid spacing is reduced to 5 km or
lower (Hutter et al., 2018; Wang, Danilov, et al., 2016), and the conclusion that mEVP and aEVP can be run
with much smaller NEVP than formally required by the standard EVP (sEVP) for such type of resolutions
may not necessarily be valid (Kimmritz et al., 2017).

In this paper, we use FESOM2 (Danilov et al., 2017) with Finite Element Sea Ice Model (FESIM; Danilov
et al., 2015) as the sea ice component, which includes both mEVP and aEVP. The model is run in a global
configuration with uniform refinement to 4.5 km in the entire Arctic Ocean. This mesh has been used in
FESOM simulations for Arctic Ocean studies (Wang, Wekerle, Danilov, Wang, et al., 2018; Wang, Wekerle,
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Danilov, Koldunov, et al., 2018; Wang et al., 2019). Its resolution already allows to simulate numerous LKFs
in the sea ice field (Wang, Danilov, et al., 2016). Here we explore the extent to which NEVP can be reduced
without degrading the obtained solutions, and it turns out that even in this case the values as low as NEVP =
100 appear acceptable.

We stress that we focus only on the impact of the sea ice solver in the regionally refined Arctic Ocean. We
do not explore the sensitivity to other parameters and do not compare results to observations. This study
can be considered as an example of the mEVP and aEVP sea ice model tuning procedure for high-resolution
applications.

FESIM does not have a JFNK solver, so we cannot explore how its mEVP and aEVP solutions deviate from
fully converged solutions, let alone possible difficulties in reaching convergence with a JFNK solver in the
presence of numerous LKFs (Losch et al., 2014). Fully converged JFNK solutions only differ from the mEVP
and aEVP solutions with a relatively low NEVP in details that are not important for most practical applications
(Kimmritz et al., 2017). Relying on this, we compare the EVP options with varying NEVP in practically feasible
limits. We concentrate on a realistic setting and try to minimize the computational cost under the condition
of getting practically acceptable solutions.

The manuscript is organized as follows: In section 2 we describe model, methods, and software used for the
analysis. In section 3 we discuss the model performance and results for the unmodified EVP, in section 4
we present results for mEVP, and in section 5 for aEVP. Summary and concluding remarks are provided in
section 6.

2. Model Description and Methods
The Finite volume sea ice ocean model (FESOM2, Danilov et al., 2017) is the successor of FESOM1.4 (Wang
et al., 2014), a global ocean model that uses unstructured meshes. Due to a new dynamical core, FESOM2
is up to 5 times faster than FESOM1.4. A triangular mesh allows one to distribute horizontal resolution in
the global model according to some “resolution function” (Sein et al., 2016, 2017) or by “zooming” into a
specific region of interest (Wekerle, Wang, von Appen, et al., 2017, Wekerle, Wang, Danilov, et al., 2017)
without traditional nesting.

In this paper we use a mesh with a 4.5-km horizontal grid spacing (defined as the length of the triangle
sides) in the Arctic Ocean and an equivalent of 1◦ resolution in the rest of the globe (Wang, Wekerle, Danilov,
Wang, et al., 2018). The mesh has 47 unevenly spaced vertical layers. The vertical mixing parameterization is
K-profile parameterization (Large et al., 1994). Isoneutral diffusion (Redi, 1982) and the Gent–McWilliams
(GM) parameterization (Gent & Mcwilliams, 1990) are used. The GM coefficient is set to 0 when the
horizontal grid spacing becomes smaller than 25 km, so that GM is not active in the Arctic Ocean.

Most of the model parameters in our runs are the same as those of Wang, Wekerle, Danilov, Wang, et al.
(2018). The transition from FESOM1.4 to FESOM2, however, leads to some modifications in the ocean
circulation, which will be reported in a dedicated ocean model evaluation paper.

The sea ice model component is version 2 of the FESIM (Danilov et al., 2015). It uses zero-layer thermody-
namics (Semtner, 1976) and includes several variants of an EVP solver. The “standard” EVP solver (sEVP) is
based on Hunke and Lipscomb (2008) but contains a small but important adjustment in the stress evolution
equations (Bouillon et al., 2013; Danilov et al., 2015) that reduces the noise in the velocity derivatives. For
convenience, the equations and parameters of sEVP, mEVP, and aEVP are briefly described in Appendices
A2 and A4. The sEVP version was used to investigate spatial and temporal variability of lead area fraction
in the Arctic Ocean with FESOM1.4 (Wang, Danilov, et al., 2016). In FESOM, the sea ice model is run on
the same CPUs as the ocean. The external time step of the sea ice model is that of the ocean model.

To generate a baseline experiment, the model was initialized in the year 1948 with Polar Science Center
Hydrographic Climatology (Steele et al., 2001) and run with CORE-II forcing (Large & Yeager, 2009) until
the year 2007. During this experiment, sEVP with NEVP = 50 was used. All the following experiments
were started from a restart file of the baseline experiment on 1 January 1980 and run for 10 years until 31
December 1989.

We detect LKFs from sea ice thickness fields with an LKF detection algorithm (Hutter et al., 2019) that (i)
classifies pixels that have a lower thickness compared to the local surroundings as pixels of LKFs, (ii) sep-
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Figure 2. (a–f) Snapshots of sea ice thickness on 31 December 1985 in sEVP simulations with different values of NEVP. Only six of the experiments are shown.
EVP = elastic-viscous-plastic; sEVP = standard EVP.

arates the binary LKF map into small segments, and (iii) connects multiple segments to individual LKFs
based on a probability that is determined by their distance and orientation relative to each other. The intro-
duction of the probability-based reconnection improves the performance of the original algorithm of Linow
and Dierking (2017).

Data analysis and visualization were performed with the following python packages: matplotlib (Hunter,
2007), Jupyter (Kluyver et al., 2016), xarray (Hoyer & Hamman, 2017), pandas (McKinney, 2010), and
scikit-image (Van der Walt et al., 2014).

3. sEVP Simulations
A series of sEVP experiments was carried out with the number of subcycles (NEVP) increasing from 50 to
1,050 with steps of 100. In the following we first describe the model's computational performance obtained
in these experiments and then discuss their results.

3.1. Computational Performance
Compared to Hunke and Lipscomb (2008), the sEVP algorithm in FESOM is slightly modified
(Appendix A2). Only with this modification it was possible to simulate LKFs in the sea ice at all, albeit with a
sufficiently large number of subcycles (Wang, Danilov, et al., 2016). Larger values of NEVP naturally decrease
the model throughput. The baseline simulation with NEVP = 50 reaches about 43 simulated years per day
(Figure 1), with the sea ice code using only about 10% of the time needed by the ocean component. With
NEVP = 350, LKFs only begin to appear in the solutions (see Figure 2c in section 2), but the model through-
put drops to 30 simulated years per day and the sea ice code takes about 50% of the computational time
needed for the ocean. With NEVP = 650, the amount of CPU time needed for ocean and sea ice is almost the
same and the throughput drops further to 23 simulated years per day. Taking NEVP = 550 as the reference

KOLDUNOV ET AL. 1272



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001485

Figure 3. Number of LKFs for simulations with different values of NEVP in
sEVP simulations for the year 1986 (a) A 10-day running mean is applied to
the time series. The thicker magenta line corresponds to the simulation
with NEVP = 550. (b) The yearly mean number of LKFs with respect to
NEVP. EVP = elastic-viscous-plastic; sEVP = standard EVP; LKF = linear
kinematic feature.

value generally needed for reducing the noise in the deformation fields on
this mesh, it is clear that with the sEVP approach simulations of realistic
sea ice dynamics on a high-resolution mesh require considerable com-
puting resources, comparable to the resources required by the 3-D ocean
model.

3.2. sEVP Results
The sea ice thickness field is very smooth for NEVP = 50 (Figure 2a) and
starts to develop some openings in the sea ice only with about NEVP = 350
subcycles (Figure 2c). The solutions with NEVP = 550, 750, and 1,050 look
very similar to each other.

The appearance of LKFs is the most striking feature as NEVP increases.
The simulated LKFs introduce anisotropy into the pack ice although by
definition the ice within one grid cell is isotropic. For a more elaborate
study and evaluation of simulated LKFs and their impact on sea ice defor-
mation we refer to Hutter et al. (2018), Spreen et al. (2017), and Wang,
Danilov, et al. (2016).

We compare the number of LKFs in different solutions (Figure 3).
The LKFs are detected in daily sea ice thickness fields of the year
1986 (Figure 3a). With increasing NEVP the number of LKFs initially
increases rapidly but levels off around NEVP = 550. This is especially
clear for the annual mean number of LKFs (Figure 3b). More subcy-
cles mean a considerable increase in computer resources (Figure 1),
but for NEVP >550 the total number of LKFs does not increase very
much, so that NEVP = 550 with ∼ 300 LKFs appears to be a good
compromise between the number of generated LKFs and the compu-
tational cost in this 4.5-km configuration. An LKF data set based on

satellite observations finds numbers of ∼250 LKFs in the western Arctic for the winters from 1997 to 2008
(Hutter et al., 2019). If we consider that this data set covers only 65% of the model domain, we obtain a
reference of ∼380 LKFs that is not reached by any of our choices for NEVP.

The changing structure of the sea ice fields also modifies integral sea ice properties such as Arctic sea ice area
(SIA) and sea ice volume (SIV; Figure 4). The time series of mean September and March SIA and SIV show

Figure 4. Monthly mean September (a, b) and March (c, d) Arctic sea ice area (a, c) and volume (b, d) in standard EVP simulations with different values of
NEVP. EVP = elastic-viscous-plastic.

KOLDUNOV ET AL. 1273



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001485

Figure 5. Snapshots of sea ice thickness on 31 December 1985 in (a) sEVP and (b–f) mEVP simulations (𝛼 and 𝛽 = 500) with different values of NEVP. mEVP
= modified elastic-viscous-plastic; sEVP = standard elastic-viscous-plastic.

positive trend over 1980–1989 period, in contrast to observations. This is due to generally overestimated sea
ice extent and exaggerated interannual variability that is similar to other sea ice ocean models participated
in CORE-II intercomparison experiment (Wang, Ilicak, et al., 2016).The SIA time series are not affected very
much by the number of subcycles, except for very small numbers of NEVP = 50 and NEVP = 150. The low
sensitivity of SIA to changes in the details of the sea ice thickness distribution is most probably related to
the fact that the sea ice coverage is to a large extent already predefined by the forcing fields (e.g., Ernsdorf
et al., 2011; Koldunov et al., 2010).

Similarly to the number of LKFs, the SIV increases with NEVP especially for small NEVP. The response of the
SIV to changes in the value of NEVP is stronger when the value is small. Possible explanations for such a sen-
sitivity are the increasing amount of open water in leads due to more LKFs or changes in the ice velocities
and modified dynamics of ridging as NEVP increases. New sea ice is actively formed in newly opened leads
and also rafts and piles up when the ice cover is closing. Kwok (2006) used satellite data to estimate the
relationship between sea ice deformation rates and sea ice growth. He found that higher and more active
deformation is associated with higher ice production and estimated that seasonal ice growth in ice fractures
accounts for 25–40% of the total ice production of the Arctic Ocean. As the number of LKFs saturates for
NEVP > 550, so does the SIV. Therefore, the mean SIV is a good indicator for the agreement between simu-
lations in terms of the sea ice that is simpler to diagnose than the number of LKFs. Similarly to the number
of LKFs (Figure 3), the differences in SIV between simulations are small for NEVP > 550–650.

Based on the analysis of LKFs and SIV, we choose NEVP = 550 as a practical compromise between quality
of the sea ice simulation and computational performance. With sEVP and NEVP = 550 sea ice model code
already uses almost the same amount of computational resources (80%) as the ocean model code. Further
increase in NEVP only leads to marginal changes in the number of LKFs and the SIV. NEVP = 550 is our
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Figure 6. Monthly mean September (a) and March (b) sea ice volume in mEVP simulations with different values of
NEVP and with 𝛼 and 𝛽 = 500. Values of sEVP with NEVP = 150 and NEVP = 550 are also shown for reference.
EVP = elastic-viscous-plastic; mEVP = modified EVP; sEVP = standard EVP.

reference value for the following experiments. Considerations of numerical stability lead to a similar
estimate (see equation A22).

4. mEVP Simulations
In the previous section we considered a series of simulations with different NEVP values for the sEVP. For
mEVP (Appendix A4) we have to select 𝛼 and 𝛽 coefficients that ensure stability of the solution. Initial
estimates of 𝛼 and 𝛽 can be obtained from expression (A22), but these estimates need to be refined exper-
imentally until sufficiently noise-free strain rates and viscosities are obtained. Further increasing 𝛼 and
𝛽 beyond values that satisfy these criteria is not recommended as it would slow down convergence. The
parameters 𝛼 and 𝛽 selected in this way are similar to the value of NEVP for the sEVP.

For our setup with 4.5-km horizontal resolution in the Arctic Ocean we selected 𝛼 = 𝛽 = 500. We per-
formed five 10-year mEVP experiments with the same parameter values as in the previous experiments with
the sEVP, but with decreasing NEVP from 500 to 100 in steps of 100. A further experiment with NEVP = 50
had unrealistic solutions with extremely thick sea ice and was discarded; as explained in Appendix A4, the
number of subcycles (NEVP) controls the convergence to the VP solution and after 50 subcycles the residuals
in the EVP equations are not reduced sufficiently. The goal of these experiments is to find the lowest NEVP
that still leads to results comparable to the reference NEVP = 550 with the sEVP.

In a comparison of the reference experiment (sEVP with NEVP = 550) with mEVP solutions with different
values of NEVP on 31 December 1985 (Figure 5), the ice thickness fields differ in details of the LKF shape and
distribution, but their large-scale features are so similar that it is difficult to distinguish between the runs in
terms of LKF density, length, or other characteristics.

We again use SIV as an indicator of similarity between simulations. Figure 6 shows mean September and
March SIV for mEVP simulations with different values of NEVP. The simulations with sEVP and NEVP of
150 and 550 are also shown for comparison. All mEVP simulations show larger SIV compared to the sEVP
simulations while being close to the results of sEVP with NEVP = 550. Differences between the mEVP
simulations are minimal and can be ignored in practice. One can conclude that with 𝛼 and 𝛽 = 500 and
NEVP=100, mEVP produces sea ice thickness fields that are close in visual characteristics and mean SIV
values to sEVP simulations with at least NEVP = 550. For computational efficiency this means that sea ice
dynamics can be calculated about 6 times faster without compromising the quality of the results.
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Figure 7. Monthly mean September (a) and March (b) sea ice volume in aEVP simulations with different values of
caEVP. For aEVP, NEVP = 100. Results for standard EVP with NEVP = 150 and NEVP = 550 are shown for reference.
EVP = elastic-viscous-plastic; aEVP = adaptive EVP.

5. aEVP Simulations
The adaptive version of the solver aEVP (Appendix A4) calculates the relaxation parameters 𝛼 and 𝛽 once
per external time step as a function of local strain rates. A typical situation is that large values of 𝛼 and 𝛽 are
only needed in small parts of the domain and that small values suffice everywhere else. The advantage of the
aEVP solver is that it adaptively ensures stability in regions where stability is more difficult to achieve while
converging faster than mEVP where the equations are less stiff (Kimmritz et al., 2016, 2017) because lower
values of 𝛼 and 𝛽 usually mean faster convergence. We have to adjust, however, a free-scaling parameter
caEVP to the resolution of the mesh. If the values of 𝛼 and 𝛽 needed for stable performance of mEVP are
already known, one selects caEVP so that peak values of 𝛼 provided by (A22) are close to the known values.
Once again, the ultimate criterion is relatively small amount of noise in strain rates and viscosities.

Figure 8. Snapshot of sea ice thickness in (a, b) sEVP and (c) aEVP simulations with different values of NEVP. EVP = elastic-viscous-plastic; aEVP = adaptive
EVP; sEVP = standard EVP.
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For our 4.5-km mesh, we started with caEVP = 2.0 and gradually reduced this value to caEVP = 1.0. The
configuration of the 10-year experiments with aEVP was the same as in the case of sEVP and mEVP, except
that we used NEVP = 100 for all experiments.

Figure 7 shows monthly mean September and March SIV for aEVP simulations with different caEVP as well
as for sEVP simulations with NEVP = 150 and NEVP = 550 for comparison. The results are closest to those
for sEVP with NEVP = 550 for caEVP = 1.25. Larger values of caEVP lead to slightly larger values of SIV that,
if compared to the sEVP results, would correspond to larger values of NEVP (Figure 4). For caEVP = 1.5, the
average values for 𝛼 and 𝛽 are close to the constant 𝛼 and 𝛽 of the mEVP experiment. An optimal choice of
caEVP would require more model tuning.

To summarize the results, we show the sea ice thickness field after the aEVP tuning with NEVP = 100 and
caEVP = 1.5 together with results for the sEVP with 150 and 550 subcycles (Figure 8). The sea ice model
with sEVP and NEVP = 150 produces very smooth fields without LKFs. With NEVP = 100, the aEVP solver
produces a sea ice field that is similar to sEVP with NEVP = 550.

6. Summary and Conclusions
We use the unstructured mesh ocean model FESOM2 with FESIM as the sea ice component to explore the
performance of the mEVP and aEVP solvers against the sEVP solver in a realistic high-resolution setting.
The model is set up on a global mesh with uniform 4.5-km refinement in the Arctic Ocean. The sEVP solver
requires a large number (550 and more) of subcycles (NEVP) to reach a practically satisfactory state where
further increase of NEVP does not dramatically change the spatial distribution of the sea ice thickness, in
particular the presence of LKFs. With sEVP and NEVP = 550 the computation of the sea ice dynamics uses
80% of the ocean model runtime. Using the mEVP and aEVP solvers allows us to have much smaller NEVP
= 100, but still, the characteristics of the sea ice field are close to those obtained with sEVP and NEVP = 550.
This increases the computational efficiency of the sea ice code by a factor of 6, boosting the performance of
FESOM2 on the particular mesh used here from a throughput of 25 simulated years per day with sEVP to
40 simulated years per day with mEVP on 1728 Intel® Xeon® Broadwell 2.3-GHz cores.

The mEVP and aEVP solvers lead to results similar to the sEVP but with a reduced number of subcycles
because the parameters that govern the stability of the solution on the one hand and its convergence to the VP
dynamics on the other hand are clearly separated. By selecting appropriate parameters 𝛼 and 𝛽, the numer-
ical procedure of mEVP and aEVP is made numerically stable. The number of subcycles is then chosen
experimentally so that the noise in the deformation fields is reduced to an acceptable level. In practice, that
does not mean convergence (see Appendix A5 for a brief discussion of convergence). If one determined the
number of iterations based on residual reduction, the aEVP may be faster than mEVP because the residual
is expected to be reduced faster in regions of small 𝛼 and 𝛽 (Kimmritz et al., 2016).

This paper presents a practical example of tuning mEVP and aEVP solvers for a new configuration. The
tuning exercise has several steps: (1) Finding appropriate parameter values 𝛼 and 𝛽 for mEVP. An initial
guess is made as 𝛼 = 𝛽 = NEVP if a reasonable value of NEVP that ensures stability of the sEVP algorithm is
already known. Alternatively, an initial 𝛼 and NEVP can be determined based on a stability criterion (relation
A22), but this is less precise. After inspecting solutions for strain rates and viscosities for noise, this first guess
may be adjusted to guarantee smooth solutions. (2) Finding the lowest possible NEVP for mEVP. Starting
from a sufficiently large NEVP ≥ 𝛼, NEVP is reduced to the smallest value for which the deviation of the
solutions from the run with high NEVP is considered acceptable. (3) Adjusting caEVP for aEVP so that peak
values are close to 𝛼 and 𝛽 needed for stability of mEVP.

We note that each new mesh may require additional tuning of the solver, in particular because the complexity
of the solutions tends to increase with resolution. New forcing fields may also require additional tuning. For
example, increased resolution of the wind forcing leads to stronger gradients in the wind stress, which in
turn increases the heterogeneity of sea ice deformation (Hutter, 2015).

The presence of LKFs in the sea ice fields does not change significantly the total Arctic SIA but leads to
considerable changes in SIV. Hence, the sea ice thermodynamics may also need to be retuned in order to fit
observations. Changes in the sea ice dynamics also lead to changes in the temperature and salinity fields (e.g.,
Castellani et al., 2018). These changes are strongest at the surface and may propagate as deep as the depth
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of the Atlantic Water layer. This also should be taken into account during the model tuning. We postpone
these questions for future work.

Note that our experiments were performed under atmospheric forcing of the 1980s, and it remains to be seen
if the tuning procedure will require additional steps in the low sea ice regime observed since the beginning
of the 21st century.

The advantages of the aEVP method over mEVP are not obvious in our simulations. For fixed NEVP both
methods require the same computer time. The expected improved convergence in areas with smaller 𝛼 and
𝛽 in aEVP is not visible in the simulated ice fields. However, aEVP can become essential in setups with
variable horizontal resolution where constant values of 𝛼 and 𝛽 may be a disadvantage.

We conclude that the mEVP and aEVP solvers increase the speed of the sea ice model calculations without
compromising the quality of the simulated sea ice fields. This makes it possible to perform climate simula-
tions with more realistic sea ice dynamics that start to resolve LKFs with a throughput of about 40 simulated
years per day on the 4.5-km resolution mesh. At present our sea ice model uses the same CPUs that are used
by the ocean model. Possible further optimization of the sea ice code in FESOM2 may involve using different
mesh partitioning for sea ice and ocean and calculating sea ice dynamics not at every ocean time step.

Appendix A: The forms of EVP Used With FESOM2
A1. Sea Ice Dynamics
We briefly explain the equations of sea ice dynamics used in this study. The text below follows Danilov et al.
(2015). The 2-D sea ice momentum equation is

m(𝜕t + f×)u = a𝝉 − aCd𝜌o(u − uo)|u − uo| + F − mg∇H. (A1)

In this equation m = 𝜌icehice + 𝜌shs is the total mass of ice plus snow per unit area, with densities 𝜌 and
mean thicknesses h over a grid cell (volumes per unit area), Cd is the ice-ocean drag coefficient, 𝜌o is the
water density, a is the sea ice concentration, u = (u, v) and uo are the ice and ocean velocities, 𝜏 is the wind
stress applied to sea ice, H is the sea surface elevation, g is the acceleration due to gravity, and Fj = 𝜕i𝜎ij is
the force from the internal stresses in ice. For brevity, we use Cartesian coordinates (i, j = 1, 2 correspond
to x and y directions) and summation over repeating coordinate indices is implied.

The internal ice stresses for the VP rheology (Hibler, 1979; Hibler & Ip, 1995) are written as

𝜎i𝑗 = 2𝜂 ( .
𝜖i𝑗 −

1
2
𝛿i𝑗

.
𝜖kk) + 𝜁𝛿i𝑗

.
𝜖kk −

1
2
𝛿i𝑗P0

Δ
Δ + Δmin

, (A2)

where

.
𝜖i𝑗 =

1
2

(
𝜕ui

𝜕x𝑗
+

𝜕u𝑗

𝜕xi

)
(A3)

is the strain rate tensor, 𝜂 and 𝜁 are the viscosities,

Δ2 = ( .
𝜖2

11 +
.
𝜖2

22)(1 + e−2) + 4 .
𝜖2

12 e−2 + 2 .
𝜖11

.
𝜖22(1 − e−2), (A4)

and P0 is the ice strength. We use the standard parameterization for the ice strength P0 and viscosities 𝜂 and
𝜁 (Hibler, 1979):

P0 = hicep∗e−C(1−a), 𝜁 =
P0

2(Δ + Δmin)
, 𝜂 = 𝜁

e2 , (A5)

with the FESOM default values e = 2, C = 20, Δmin = 2 ·10−9 s−1, and p* = 27, 500 N/m2. Δmin imposes a
viscous regularization of plastic behavior in areas where Δ is very small. To avoid ice motion in the absence
of forcing, the replacement pressure (RP; Hibler & Ip, 1995) is used in the last term in (A2).
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A2. EVP Approach
In the EVP approach (Hunke & Dukowicz, 1997; Hunke & Lipscomb, 2008), a pseudo elastic term is added to
the stress relation (A2), so that the stress relaxes to the VP relation when elastic perturbations decay. Using

𝜎1 = 𝜎11 + 𝜎22, 𝜎2 = 𝜎11 − 𝜎22 (A6)

and similar combinations for the strain rates
.
𝜖1 = .

𝜖11 +
.
𝜖22,

.
𝜖2 = .

𝜖11 −
.
𝜖22, (A7)

the EVP stress equations can be written as

𝜕𝜎1

𝜕t
+

𝜎1

2T
=

P0

2T(Δ + Δmin)
( .
𝜖1 − Δ), (A8)

𝜕𝜎2

𝜕t
+

e2𝜎2

2T
=

P0

2T(Δ + Δmin)
.
𝜖2, (A9)

𝜕𝜎12

𝜕t
+

e2𝜎12

2T
=

P0

2T(Δ + Δmin)
.
𝜖12, (A10)

where T is a relaxation time that determines the time scale of transition from elastic behavior to the VP
rheology. The default value is T = Δt∕3, where Δt is the external time step (set by the ocean model). The
EVP stresses coincide with the VP ones if the contribution from the time derivatives are small toward the
end of Δt.

The stress equations are stepped forward in time together with the momentum equation (A1) with a short
subcycling time stepΔtEVP = Δt∕NEVP, where NEVP is the number of subcycles. Because the subcycling time
step ΔtEVP is explicit, it is limited from above by numerical stability (see Hunke, 2001; Hunke & Dukowicz,
1997). NEVP is a large number. The CICE manual recommends 120 subcycles (Hunke et al., 2018). Assuming
that Δt and hence T scales proportionally to the mesh resolution Δx, one expects that NEVP ∼ Δx−1/2. This
places a restrictive upper limit on ΔtEVP, especially for fine meshes, and presents a problem for unstructured
meshes with variable resolution. Failing to satisfy the upper limit on the subcycles time step generally leads
to noise in the strain rates that modifies the solutions. In general, the fields of thickness and concentration
remain comparably smooth.

A3. EVP Implementation of FESIM (sEVP)
A simple modification of the EVP equations strongly reduces the noise in ice strain rates (Bouillon et al.,
2013; Danilov et al., 2015). Dividing equations (A9) and (A10) by e2, but neglecting this factor in the time
derivatives, gives (

𝜕

𝜕t
+ 1

2T

)
𝜎1 =

P0

2T(Δ + Δmin)
( .
𝜖1 − Δ), (A11)

(
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+ 1
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)
𝜎12 =

P0

e22T(Δ + Δmin)
.
𝜖12. (A13)

Note that for 𝜕

𝜕t
→ 0 one still recovers the VP expression for stresses. Our explanation of why (A11)–(A13)

work better than (A8)–(A10) is that all three stress components approach their VP states at the same rate
defined by 2T. In the original formulation the rate is 2T for (A8) and 2T∕e2 for (A9)–(A10). The consequences
of this modification are substantial, as illustrated in the supporting information of Wang, Danilov, et al.
(2016). This version is used in the sEVP simulations in this study. Discretization with respect to time results
in

𝜎
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1 − 𝜎

p
1

ΔtEVP
+

𝜎
p+1
1

2T
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Pn
0
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p
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for the stresses and

up+1 − up

ΔtEVP
= − f × up+1

+ 1
m
[Fp+1 + a𝝉n + Cda𝜌o(un

o − up+1)|un
o − up| − mgΔHn]

(A17)

for the velocity. Here n is the index of the external time step and p = 1, … ,NEVP is the index of subcycles.
For p = 1 fields are initialized with values at the external time level n, and their values for the last iteration
p = NEVP are taken as solutions for time level n + 1.

A4. mEVP and aEVP
The mEVP approach detaches subcycling from the physical time stepping (Bouillon et al., 2013; Kimmritz
et al., 2015; Lemieux et al., 2012). Instead, it can be seen as a pseudo time solver for the VP rheology. The
stress equations are rewritten as

𝛼(𝜎p+1
1 − 𝜎

p
1 ) =

Pn
0
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12) =

Pn
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p
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12, (A20)

and the momentum equation as

𝛽(up+1 − up) = − up+1 + un − Δtf × up+1

+ Δt
m

[Fp+1 + a𝝉 + Cda𝜌o(un
o − up+1)|un

o − up| − mg∇Hn].
(A21)

Here 𝛼 and 𝛽 are some large constants. The superscript p denotes the pseudo time iterations, replacing the
subcycling of the sEVP, and n is the index of the external time level. Fields are initialized with values at the
external time level n for p = 1, and their values for the last iteration p = NEVP are taken as solutions for
time level n + 1.

For iterations to be stable, the product 𝛼𝛽 should be sufficiently large compared to 𝜋2P0Δt(Δ + Δmin)−1

m−1Δx−2 (Bouillon et al., 2013; Kimmritz et al., 2015). A comment on the relation between the parame-
ters of sEVP and mEVP seems in place. Comparing, for example, (A11) and (A18), we see that 2T in sEVP
is similar to 𝛼ΔtEVP = 𝛼Δt∕NEVP in mEVP. The common selection T = Δt∕3 in sEVP then implies that
𝛼 = (2∕3)NEVP. The relaxation toward the VP stresses follows exp(t∕2T) in sEVP and exp(−p∕𝛼) in mEVP
and for T = Δt∕3 both lead to the attenuation factor e−3/2 by the end of the time step Δt. For given 𝛼, the
number of subcycles NEVP in mEVP defines how far the VP state is approached per external time step. The
sEVP scheme with NEVP = 120 and T = Δt∕3 approximately corresponds to 𝛼 = 𝛽 = 80 in mEVP if
NEVP is kept the same and neglecting all stability considerations. Although stability requirements are simi-
lar for sEVP and mEVP if expressed in equivalent terms, stability is governed by the selection of 𝛼 and 𝛽 in
mEVP and is not related to NEVP. This difference is of primary importance because it governs how NEVP is
determined: After selecting 𝛼 and 𝛽 so that stability is ensured, one starts with NEVP well in excess of 𝛼 and
𝛽 and reduces it in a set of runs to find the smallest possible value. Once found for a particular resolution,
it is hoped that the parameters are suitable for all other setups at this resolution. Note that while the stress
equations in sEVP and mEVP can be made identical by adjusting the notation, the momentum equations
differ in the treatment of the time derivative. All simulations were performed with 𝛼 = 𝛽.
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Figure A1. Area-mean L2 norm of the residuals with (a, c) and without replacement pressure (b, d), using 𝛼, 𝛽 = 500
(a, b) and 𝛼, 𝛽 = 1, 700 (c, d). Different colors denote randomly selected different ocean (external) time levels. mEVP =
modified elastic-viscous-plastic; RP = replacement pressure.

The adaptive method makes one further step by estimating 𝛼 and 𝛽 at each particular location at run time
(Kimmritz et al., 2016). We use

𝛼 = max

(
50, caEVP

√
P0Δt

(Δ + Δmin)mAc

)
, (A22)

at each triangular cell. In this expression Ac is the area of the triangular mesh cell. The constant caEVP
needs to be determined experimentally, because caEVP∕Ac is an estimate for the unknown eigenvalues of the
second-order differential operator stemming from the divergence of stresses (Kimmritz et al., 2016). Once
the field of 𝛼 is known at triangles, we determine 𝛽 at mesh vertices (where velocities are taken) by look-
ing for the maximum 𝛼 on neighboring triangles. The complexity of the solutions increases with resolution
because of an increased amount of simulated LKFs. This is the reason why an adjustment of caEVP may be
needed.

Note that with caEVP = 1, (A22) can be used for a guess for the value of 𝛼 = 𝛽 needed for stability of mEVP.
For our 4.5-km mesh Ac ≈ 2 × 107 m2, so the estimate is 𝛼 ≈ 800 for the worst case of very smallΔ. A slightly
smaller value of 𝛼 = 500 was found to already ensure nearly noise-free sea ice fields in our simulations.

We also note that the particular values of the parameters may depend on details of the discretization, but we
do not expect large deviations from the values reported here for the FESIM implementation of the considered
EVP solvers.

A5. Comments on the Convergence of mEVP and aEVP
Kimmritz et al. (2017) compared the accuracy and convergence of mEVP and aEVP with respect to the
numerically converging solutions obtained with a JFNK solver in a realistic Arctic configuration with a
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resolution of 27 km and the Massachusetts Institute of Technology general circulation model (Marshall et al.,
1997). They concluded that the difference between the mEVP (aEVP) and JFNK solutions is negligible from
a practical point of view.note, however, that they found convergence of mEVP (aEVP) only without using the
RP method, while the convergence stalled with RP. The fields of residuals defined as the left-hand sides of
(A18)–(A20) and (A21) showed a wave-like pattern propagating from the area of the Canadian Archipelago
in the RP case, yet it was found to have little bearing on the agreement with the JFNK solution. The behavior
of FESIM is very similar at the similar 25-km resolution (not shown) and also at the resolution of 4.5 km
used here (Figure A1).

Using 𝛼, 𝛽 = 500 for our 4.5-km configuration represents a compromise and still leaves a small area with
noise in the field of Δ that we used for diagnostics (not shown). Because of this noise, true convergence,
judged by the behavior of the area-mean L2 norm of the residuals (Figure A1), is not achieved independent
of the RP, and NEVP = 100 ensures only a small error reduction. The noise fully disappears for 𝛼, 𝛽 =
1, 700, which allows a residual norm reduction by about 12 orders of magnitudes in the no RP case for
NEVP = 50, 000, which agrees with the exponential scaling (exp(−p∕𝛼)). This number of iterative steps is
impractically high.

Practically affordable EVP solutions stay therefore very far from convergence to the VP rheology. Based
on the results of Kimmritz et al. (2017), we can hope that the simulated ice thickness distribution is close
to the hypothetical VP solution. Yet we cannot draw such conclusions based on the distribution of LKFs
(Figures 2 and 4) because there are no analogous feature in the coarse resolution simulations of Kimmritz
et al. (2017). We do not see any essential changes in the basin-wide sea ice thickness pattern and the num-
ber of simulated LKFs with mEVP for the range of parameters explored, but NEVP is still far from values
needed for convergence. Pseudo elastic waves are present in such solutions and may affect the distribution
of simulated LKFs.

To explore the question of how much convergence is “necessary” with EVP, comparisons with solutions
obtained with a Picard solver, and with converged mEVP solution with larger 𝛼 and very large NEVP, are
required. Typically, a Picard solver with order 10 iterations also does not converge, but it is free of pseudo
elastic waves. The converged mEVP solutions can be simulated for limited time intervals despite their rather
high cost. The Picard solver of FESIM is still not adapted to FESOM2. Respective results will be presented
in due course.

Notation
m total mass of ice plus snow per unit area.
𝜌 density of sea ice.
𝜌o density of water.
h mean thicknesses over a grid cell.

Cd ice-ocean drag coefficient.
a sea ice concentration.

u = (u, v) sea ice velocities.
uo ocean velocities.

ø wind stress applied to sea ice.
H sea surface elevation.
g acceleration due to gravity.

𝜎ij internal ice stress tensor.
.
𝜖i𝑗 strain rate tensor.

𝜂, 𝜁 viscosities.
P ice strength.
Δ the measure of ice deformation.

Δmin threshold value of Δ.
T relaxation time that determines the time scale of transition from elastic behavior to the VP

rheology.
Δt the external time step (set by the ocean model).

Δt∕NEVP density.
NEVP number of subcycles.
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𝛼 and 𝛽 constants that control numerical stability of mEVP and aEVP.
Ac area of the triangular mesh cell.

caEVP a tuning constant in aEVP.
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