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Yuefei Zeng1,2 , Tijana Janjić2 , Matthias Sommer1,2, Alberto de Lozar3, Ulrich Blahak3,
and Axel Seifert3

1Meteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, Germany, 2Hans Ertel Centre for
Weather Research, Deutscher Wetterdienst, Offenbach, Germany, 3Deutscher Wetterdienst, Offenbach, Germany

Abstract To account for model error on multiple scales in convective-scale data assimilation, we
incorporate the small-scale additive noise based on random samples of model truncation error and
combine it with the large-scale additive noise based on random samples from global climatological
atmospheric background error covariance. A series of experiments have been executed in the framework
of the operational Kilometre-scale ENsemble Data Assimilation system of the Deutscher Wetterdienst
for a 2-week period with different types of synoptic forcing of convection (i.e., strong or weak forcing).
It is shown that the combination of large- and small-scale additive noise is better than the application of
large-scale noise only. The specific increase in the background ensemble spread during data assimilation
enhances the quality of short-term 6-hr precipitation forecasts. The improvement is especially significant
during the weak forcing period, since the small-scale additive noise increases the small-scale variability
which may favor occurrence of convection. It is also shown that additional perturbation of vertical velocity
can further advance the performance of combination.

1. Introduction
For ensemble Kalman filter (Evensen, 1994), explicit mechanisms are required to mitigate the underestima-
tion of background error covariances that are limited by the ensemble size and model imperfections. One
of the well-established techniques is additive covariance inflation, also called additive noise, which mod-
ifies the background/analysis error covariance by adding a covariance matrix or by adding a perturbation
to each ensemble member. The perturbed ensemble may introduce an error-growing subspace that may be
missed in the original ensemble (Hamill & Whitaker, 2005). To generate a perturbed ensemble, Houtekamer
et al. (2005) drew random samples from the Three-Dimensional VARiational (3DVAR) background error
covariance that represents the large-scale and barotropic structure. Whitaker et al. (2008) randomly selected
samples based on differences between adjacent 6-hr analyses from a subset of National Centers for Environ-
mental Prediction/National Center for Atmospheric Research reanalysis to emphasize growing baroclinic
synoptic-scale structures in middle latitudes. Yang et al. (2015) used the leading ensemble singular vectors
derived from ensemble forecasts of quasi-geostrophic multilayer channel model as additive inflation to cor-
rect the fastest-growing errors. Reviews of treatment of model error through covariance inflation can be
found in Meng and Zhang (2011) and Houtekamer and Zhang (2016).

In the context of convective-scale data assimilation, Snyder and Zhang (2003) assimilated radar observa-
tions of radial wind in an idealized setup with 3-D wind and potential temperature of initial ensemble
perturbed by grid point Gaussian noise either throughout the domain or around the known storm loca-
tion, and they found the latter one produced less spurious convective cells. Rather than grid point noise,
Dowell, Zhang, et al. (2004) initialized the ensemble by adding smooth ellipsoidal perturbations to hori-
zontal wind, potential temperature, rainwater, and total water and achieved faster updraft and more spread
throughout the assimilation than Snyder and Zhang (2003). Furthermore, Dowell, Wicker, and Stensrud
(2004) added warm bubbles at random locations close to the storm in the initial ensemble to trigger convec-
tive cells. In contrast to those studies that relied on a priori knowledge about the locations of storms, Caya
et al. (2005) used observed reflectivities as indicator for storms and added localized smooth noise to the ini-
tial ensemble. Furthermore, Dowell and Wicker (2009) introduced random smoothed noise to horizontal
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wind, potential temperature, and humidity at places with observed high reflectivities (20 dBZ) throughout
assimilation cycles and showed that this technique produced appropriately large spread within the convec-
tive cells and small spread in the environment during data assimilation. Later on, Sobash and Wicker (2015)
argued that magnitudes of smoothed noise in Dowell and Wicker (2009) can vary significantly depending
on the smoothing length scales. Noise of large magnitude is effective to spin-up convective systems while
noise of small magnitude is preferable when convective systems become already maturely established in
analyses. The repeated addition of large noise may introduce temperature and moisture biases to the surface
cold pool and to the tropopause. Therefore, Sobash and Wicker (2015) suggested adding noise where the
reflectivity innovation exceeded a threshold value. By using this sort of adaptive technique, they were able to
reduce thermodynamic biases. Zeng et al. (2018) showed that large-scale additive noise (hereafter denoted
by “LAN”) that is based on random samples from climatological atmospheric background error covari-
ance used by the global EnVar data assimilation system may partially represent large-scale error arising
from the global driving model ICON (ICOsahedral Nonhydrostatic; Zängl et al., 2015). The LAN performs
equally or even better than the relaxation methods RTPP (relaxation to prior perturbations; Zhang et al.,
2004) and RTPS (relaxation to prior spread; Whitaker & Hamill, 2012) as well as combinations under strong
forcing weather conditions, but the performance of the LAN degrades a bit under weak forcing conditions,
assumedly due to being less representative for small-scale features.

A number of studies demonstrated that increasing model resolution could improve the performance of
ensemble-based data assimilation and forecasting system (Buizza et al., 2005; Lei & Whitaker, 2017; Pellerin
et al., 2003). The refinement of resolution may resolve not only new phenomena but also enable their non-
linear interactions with large-scale motions due to multiscale properties of atmospheric dynamics (Navarra
et al., 2010). For the convective-scale precipitation forecasts, Lean et al. (2008) showed that a delay may occur
in the convection initiation because the model fails to reproduce small initial convective plumes due to the
large viscosity at a coarser resolution. Buzzi et al. (2014) argued that the finer resolution results in more
accurate small-scale features such as low-level convergence and orographic lifting that in turn determines
the onset of convection. Obviously, convective circulations that are permitted but not properly resolved by
models are associated with large errors at the smallest scales allowed by the limited resolution. Hence, model
truncation error is considered as one of the important sources of model error for convection. To account
for model truncation error in the ensemble data assimilation scheme for a primitive equation global model,
Hamill and Whitaker (2005) used samples from a time series of differences between model forecasts at dif-
ferent resolutions in the fashion of additive noise. They showed that this method is superior to additive
noise based on samples of 24-hr forecast tendencies and of model state's anomaly from the model climatol-
ogy. This additive noise method based on model truncation error is hereafter denoted by “SAN” (small-scale
noise) since it is expected to somehow represent small-scale or unresolved model error. In this work, we
incorporate the SAN into the data assimilation scheme of Local Ensemble Transform Kalman Filter (LETKF,
Hunt et al., 2007) in the operational Kilometre-scale ENsemble Data Assimilation (KENDA) system of the
Deutscher Wetterdienst (DWD; Schraff et al., 2016). The operational numerical weather prediction (NWP)
model is the convection permitting COnsortium for Small-scale MOdelling (COSMO, Baldauf et al., 2011)
model. We will investigate the performance of the LAN, SAN, and combinations of both in the context of
convective-scale data assimilation. Similar to Zeng et al. (2018), we choose a 2-week period in Germany with
different types of synoptic forcing. The application of the SAN is expected to be especially useful for the
weak forcing conditions.

The paper is organized as follows. Section 2 demonstrates how to create a set of samples for model trun-
cation error of the COSMO model. We investigate as well their statistical properties and kinetic energy
spectra. Section 3 shortly describes the experimental setup. Section 4 compares the performance of different
experiments, and section 5 summarizes the obtained results.

2. Additive Noise Based on Model Truncation Error
2.1. Methodology
Similar to Hamill and Whitaker (2005), differences between forecasts that are valid at the same time but
equipped with different resolutions are treated as samples for model truncation error:

𝛈 =  {H[xH(tk − t)]} −L{ [xH(tk − t)]}, (1)
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Figure 1. Hourly variations in numbers of model grid points with precipitation rate ≥ 5.0 mm/hr during the training
period. All data are derived from the mean of ensemble forecasts of COSMO-DE.

where  is the interpolation operator from the high to the low resolution, xH is model state at the high
resolution, and H and L are the integration operators of model at high and low resolutions, respectively.
The forecast time interval t is predefined, and the valid time tk is randomly chosen. Therefore, the model
truncation error is formed by differences between the truncated forecast from a high-resolution model using
a high-resolution initial condition and a low-resolution forecast from a truncated initial condition. It may
describe the (short-term) forecast error at resolved scales owing to the lack of ability to model activities at
unresolved scales.

The operational horizontal resolution of the COSMO-DE model is 2.8 km. To create a set of samples for
model truncation error, the COSMO-DE model is run with a high resolution of 1.4 km for a training period
from 1 May 2014 at 00:00 UTC to 12 May 2014 at 00:00 UTC. During the period, a low-pressure cyclone
affected a large area of southeastern and central Europe, causing severe thunderstorms with heavy rain as
indicated by hourly variations of numbers of model grid points with precipitation rate ≥ 5.0 mm/hr for
each day in Figure 1. The hourly outputs of forecasts at resolution of 1.4 km are then interpolated (via the
program INT2LM Schättler, 2013) onto the coarse grid with the lower (operational) resolution of 2.8 km.
These interpolated fields serve as initial conditions for 24-hr COSMO-DE forecast runs at a resolution of 2.8
km (see Figure 2). Lateral boundary conditions are provided by Integrated Forecast System (IFS) analysis
every 6 hr. Therefore, for any chosen forecast time interval t ∈ {1, … , 24} hr, there is a corresponding set
of samples for model truncation error. For instance, for t = 1 hr, the set is composed of 288 samples.

At the analysis step, for each ensemble member a sample 𝜂(i) is randomly drawn from the set and added to
the analysis ensemble member xa(i) as follows:

xa(i) ← xa(i) + 𝛼S𝛈(i), (2)

Figure 2. The COSMO-DE model with horizontal resolution of 1.4 km is
run from 1 May 2014, 00:00 a.m. to 12 May 2014, 00:00 a.m. with hourly
outputs. The hourly outputs are then interpolated (via the program
INT2LM) onto the coarser grid with horizontal resolution of 2.8 km. These
interpolated fields serve as initial conditions for 24-hr COSMO-DE
forecasts.

where 𝛼S is a tunable parameter. For instance, Hamill and Whitaker
(2005) chose 𝛼S = 1.20 by experimentation.

2.2. Spectra and Statistics of Model Truncation Error
In the following, several properties of model truncation error, including
kinetic energy spectrum and horizontal correlation, are computed, and
their physical plausibility is elaborated. Since our goal is to represent
model error at convective scale and since we will be doing data assimila-
tion in hourly intervals, we choose samples with t = 1 hr in (1). Some
important features of these samples are shown in the following.

Similar to Dowell and Wicker (2009) and Sobash and Wicker (2015),
model variables of zonal velocity u, meridional velocity v, temperature
T, and relative humidity qv are perturbed. Perturbations of u and v can
generate horizontal mass convergence, which is favorable for convection
initiation (Banacos & Schulz, 2005). However, if only perturbing u and v
without perturbing vertical velocity w, conservation of momentum may
be violated due to mass continuity equation, and gravity waves can be
evoked, which could be an additional source of imbalance. Therefore, the
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Figure 3. Mean model error of u at model levels 10 (∼ 13 km, upper) and 30 (∼ 3 km, lower), averaged over 40 random
samples in case of t = 1 hr.

effects of perturbing w will be examined in this work. The other microphysical variables such as cloud
droplets qc, cloud ice qi, rain qr , snow qs, and graupel qg are currently not perturbed.

First of all, Figure 3 exemplifies mean model truncation error of u (averaged over 40 random samples)
at model levels 10 (∼ 13 km, lower stratosphere) and 30 (∼ 3 km, lower troposphere). At model level 10,
small-scale structures of model error can be particularly seen in the south (Alpine Region), probably due to
vertical propagation of gravity waves triggered by differently resolved orography. The northwestern part of
the domain over the sea is relatively smooth. Additionally, it can be seen in Figure 4 that the kinetic energy
spectrum ranges from 100 to 104 m3s-2 and the power declines strongly when the wavelength is smaller than
100 km. At model level 30, model truncation error exhibits even smaller features. Accordingly, the kinetic
energy spectrum varies within a very narrow range (from 102 to 104 m3s-2) and the amplitudes of power are
up to 3 orders of magnitude larger than at model level 10 for wavelength ≤ 100 km. Smaller scales of model
truncation error are visible at lower atmosphere (e.g., 3 km) due to more convection being triggered with
higher resolution model, resulting in more variability, than in the upper atmosphere (e.g., 13 km). It should
be also pointed out that 40 random samples are used in Figure 3 since this is the ensemble size of data assim-
ilation system. If the model truncation error is averaged over all samples (288), the absolute magnitude of
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Figure 4. Power spectra of mean model error of u at model levels 10 (∼ 13
km, solid) and 30 (∼ 3 km, dashed), averaged over 40 random samples. The
spectrum is calculated over a square domain by removing 20 grid points in
latitude on each side of the COSMO-DE domain. One-dimensional
spectrum results from 2-D Fourier transformation into linearly detrended
field and subsequent summation of the Fourier coefficients over annuli in
wave number space.

mean error decreases due to larger amount of samples, but the mean
sample error is subtracted from each sample while applying the SAN.

Figure 5 illustrates the horizontal correlation of model truncation error
for perturbed variables u (v is omitted for brevity), w, T, and qv for dis-
tance 0 to 1,400 km at model levels 10 and 30. At model level 10, the
correlation for u decreases slowly with distance and small correlation
(≈ 0.1) still exists up to 1,400 km; the correlation for w decreases rapidly
to 0 within 400 km; the correlation for T decreases slowly and ends up
with 0 at 1,400 km; the correlation for qv decreases faster than for u and
T but much more slowly than w and approaches 0 at around 800 km.
At model level 30, the correlation for u decreases sharply to around 0.1
within tens of kilometers and completely disappears at about 800 km.
Similar behavior of correlation can also be seen for T and qv. For w little
or no correlation can be recognized. To sum up, the horizontal correla-
tion length scale reduces with decreasing height, probably due to the fact
that model variables generally exhibit much more spatial variability in the
lower troposphere than in the lower stratosphere; it also corresponds to
what has been seen in Figure 3. We have also computed horizontal corre-
lations of model truncation error resulting from t > 1 hr; the correlation
length scale increases with larger t as expected (not shown).

Figure 6 shows the histograms of model truncation error for u, w, T, and qv at model levels 10 and 30. First
of all, it can be seen that the distributions of error of all variables at both levels have mean (denoted by 𝜇)
of 0. At model level 10, the distribution of error of u has standard deviation 𝜎 of 0.353 m/s and kurtosis 𝛾 of
2.162. The nonzero 𝛾 indicates that the distribution has slightly heavier tails and a slightly higher peak than
the corresponding Gaussian distribution (note that 𝛾 = 0.0 for the Gaussian distribution). The distribution
of error of w has 𝜎 = 0.032 m/s and 𝛾 = 33.139, and it is much more strongly tailed and peaked than the
Gaussian distribution. The distribution of error of T has 𝜎 = 0.157 K and 𝛾 = 2.162. The distribution of
model error of qv has 𝜎 = 2.5 × 10−8 and 𝛾 = 37.293. At model level 30, the distribution of error of u
has 𝜎 = 0.425 m/s and 𝛾 = 28.63, which is much greater than at level 10. The distribution of error of w
has 𝜎 = 0.02 m/s which is 1 order of magnitude higher than that at level 10, probably due to occurrence
of convection at the lower troposphere. The kurtosis of 𝛾 = 329.122 is significantly greater than at level
10. The distribution of error of T has 𝜎 = 0.153 K and 𝛾 = 18.602 which is also much greater than at

Figure 5. Horizontal correlation of model truncation error for model variables u, w, T, and qv at model levels 10 (∼ 13 km) and 30 (∼ 3 km) in case of t = 1 hr.
The correlations are averaged over all the horizontal grids given a vertical level.
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Figure 6. Histogram of model error samples for model variables u, w, T, and qv at model levels 10 (∼ 13 km) and 30 (∼ 3 km) in case of t = 1. The variable 𝜇 is
the mean of the distribution, 𝜎 is the standard deviation, and 𝛾 is the kurtosis. Dash lines depict the corresponding Gaussian distributions.

level 10. The distribution of error of qv has 𝜎 = 8.8 × 10−5, 3 orders of magnitude greater than at level 10
since the lower troposphere is much wetter, while 𝛾 = 43.459 is only slightly greater than at level 10. In
general, it can be said that the distributions of model truncation error of u and T are much more Gaussian
in the lower stratosphere than in the low troposphere, and the distributions of model error of w and qv
are strongly non-Gaussian. The application of the SAN may introduce some extra non-Gaussianity into the
ensemble, which is undesired by the ensemble Kalman filter. However, since the perturbations are added to
the analysis ensemble as (2), the side effect of non-Gaussianity may be secondary compared to the nonlinear
model integration.

Finally, it is worth noting that we have also explored the sensitivity of model truncation error to the length
of the training period (not shown). It is found that 6 days is required to achieve approximate statistics (e.g.,
correlation length scale) as in the whole training period (12 days).

3. Brief Summary of Experimental Setup
Similar to Zeng et al. (2018), we choose a 2-week period from 27 May to 9 June 2016 with extraordinar-
ily many severe convective storms in Germany. In the first week (from 27 May to 2 June) under strong
large-scale forcing weather conditions, the convective activity was characterized by larger-scale precipitation
patterns caused by frontal ascent, whereas much more scattered convective cells triggered by local mecha-
nisms prevailed in the second week (from 3 June to 9 June) under weak forcing conditions. It has been shown
in Zeng et al. (2018) that the LAN, based on random samples from climatological atmospheric background
error covariance used by the global EnVar data assimilation system, mimics large-scale uncertainties aris-
ing from the global driving model and performs equally or even better than relaxation methods as well as

Table 1
Experimental Setup

SAN (𝛼S = 1.25)
Experiment LAN (𝛼L = 0.1) w unperturbed w perturbed
E_LAN0.10 ✓ × ×
E_SAN1.25 × × ✓
E_LAN0.10SAN1.25NW ✓ ✓ ×
E_LAN0.10SAN1.25 ✓ × ✓

Note. In each experiment either the LAN with 𝛼L = 0.1 or the SAN with 𝛼S = 1.25 or
both can be applied. For the SAN it can be chosen if w is perturbed. ✓ means “on” and
× means “off.” LAN = large-scale noise; SAN = small-scale noise.
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Figure 7. Mean spread of the background ensemble for variable u at model levels 10 (∼ 13 km, upper) and 30 (∼ 3 km,
lower) for E_LAN01.10 and E_LAN0.10SAN1.25. The spread is averaged over all assimilation cycles.

combinations under strong forcing weather conditions. Its performance degrades a bit under weak forcing
conditions, assumedly due to being less representative for small-scale features. Since the SAN may remedy
model states with information on small scales, it may be especially useful to enhance the performance in
case of weak forcing. Therefore, we first conduct a series of experiments for the second week in Study 1
(weak forcing) and then repeat the same experiments for the first week in the Study 2 (strong forcing). Note
that the SAN randomly draws samples from the year 2014, which was governed by different synoptic condi-
tions than the year 2016 of experiments. There was no attempt made to have samples with similar convective
activities so that the results can be generalized outside of the training manifold. The experimental setup is
given in Table 1, including combinations of the LAN and SAN, that is,

xa(i) ← xa(i) + 𝛼L𝛈
(i)
L + 𝛼S𝛈

(i)
S , (3)

where 𝛈(i)
L and 𝛈(i)

S are random large- and small-scale samples, respectively. The tunable parameter 𝛼L for the
LAN has been tuned in Zeng et al. (2018) and set to 0.1. With the LAN, u, v, qv, T, and p are perturbed. For
the SAN 𝛼S has been also tuned. It is found out that 𝛼S = 1.25 has the best performance both in assimilation
cycling and 6-hr ensemble forecasts for the SAN alone as well as for combinations with the LAN (not shown).
Note that it is very close to 𝛼S = 1.20 chosen by Hamill and Whitaker (2005) for their application.

Experiments are run by using the KENDA system at the DWD. Conventional observations from radiosondes
(TEMP), wind profilers (PROF), aircraft reports (AIREP), and synoptic surface stations (SYNOP) are assim-
ilated by the LETKF. In addition, radar reflectivity and no-precipitation observations (i.e., observations of
reflectivity ≤ 5 dBZ) are also directly assimilated via the application of the radar forward operator EMVO-
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Figure 8. The power spectra of spread of u in Figure 7 at model levels 10 (- 13 km, upper) and 30 (- 3 km, lower) for
E_LAN01.10 and E_LAN0.10SAN1.25.

RADO (Zeng et al., 2014, 2016). The assimilation window is 1 hr, and the ensemble size is 40. In addition,
ensemble forecasts (of 20 members) are run daily at 10:00, 11:00, … , 17:00 and 18:00 UTC.

The NWP model is the operational convective-permitting COSMO model, which is fully compressible and
nonhydrostatic (Baldauf et al., 2011; Doms et al., 2011; Doms & Baldauf, 2015). The model size is 421 × 461 ×
50 with horizontal resolution of 2.8 km. The one-moment microphysical scheme based on Lin et al. (1983)
and Reinhardt and Seifert (2006) is utilized. Lateral boundary conditions for the ensemble are provided by
the EPS (Ensemble Prediction System) of the operational global model ICON.

A general description of the KENDA system and the LETKF can be found in Schraff et al. (2016). More
details about weather situation (e.g., strong/weak forcing) and treatment of observations assimilated (e.g.,
superobbing, localization, and specification of observation error) are given in Zeng et al. (2018).

4. Experiment Results
As mentioned above, a series of experiments including the application of the LAN only (E_LAN0.10),
application of the SAN only (E_SAN1.25), and the combinations of both (E_LAN0.10SAN1.25NW and
E_LAN0.10SAN1.25, the former one is without perturbing w) are first conducted for the weak forcing con-
ditions (from 27 May to 2 June) in Study 1 and then restarted for strong forcing conditions (from 3 June to
9 June) in Study 2. In the following, we will begin with looking into the background ensemble spread and
kinetic energy spectrum of analysis during the cycling and then we will mainly focus on the performance
during 6-hr ensemble forecasts.

To account for uncertainties in verification scores, such as fractions skill score (FSS, Robert & Lean, 2008)
and false alarm rate (FAR), the bootstrap method (Efron & Tibshirani, 1993) is used. E_LAN0.10 is taken as
the reference run, the relative differences compared to E_LAN0.10 are calculated, and then 10,000 bootstrap
resampling is carried out to examine the statistical significance at 95% confidence intervals.

4.1. Study 1
Figure 7 depicts the background spread of u at different levels for E_LAN0.10 and E_LAN0.10SAN1.25. At
level 10, E_LAN0.10 results in a spread that decreases from 1.32 m/s at the boundary to 1.140 m/s in the
inner domain since more observations are available and assimilated in the inner domain. In comparison,
E_LAN0.10SAN1.25 generates a larger spread than E_LAN0.10 in the inner domain, and more importantly,
the spread is larger for smaller scales as indicated by the power spectra in Figure 8. At level 30, the spread
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Figure 9. Mean kinetic energy spectra of the analysis ensemble at model levels 10 (∼ 13 km, upper) and 30 (∼ 3 km,
lower) for E_LAN01.10 and E_LAN0.10SAN1.25. The kinetic energy spectra are calculated for each ensemble member
and then averaged over the ensemble size. This is done for 00:00 UTC of each day during the period of Study 1, and
then the average is calculated. Mean kinetic energy spectra of E_SAN1.25 and E_LAN0.10SAN1.25NW are very
comparable to those of E_LAN0.10SAN1.25 (not shown). The green and red lines show the reference lines for −3 and
−5/3 power laws, respectively.

of E_LAN0.10 has a sharper decrease (from 1.2 m/s at the boundary to 0.75 m/s in the inner domain)
than at level 10, due to denser observations in the lower troposphere. Again, E_LAN0.10SAN1.25 results
in a larger spread especially at smaller scales. It is likely that small-scale structures in background ensem-
ble spread allow small-scale updates and create more small-scale variability in model states, which favors
strong horizontal convergence and consequently onset of convection. Moreover, the mean kinetic energy
spectra of analysis ensemble are shown in Figure 9. It can be seen that the slope of kinetic energy spec-
trum of E_LAN0.10SAN1.25 at model level 10 (∼ 13 km) is almost parallel to −5/3 and much shallower
than that of E_LAN0.10 for wavelengths shorter than 100 km. Selz et al. (2018) showed that the kinetic
energy on scales smaller than 300 km is strongly positively correlated with convective precipitation. There-
fore, E_LAN0.10SAN1.25 is prone to triggering more convective precipitation than E_LAN0.10, however,
it may have some corresponding side effects. Figure 10 shows that E_LAN0.10SAN1.25 has much higher
surface pressure tendency St than E_LAN0.10 at analysis steps, which indicates more imbalanced model
states in E_LAN0.10SAN1.25. One would usually expect that imbalanced model states might cause spurious

Figure 10. Half-hourly evolution of surface pressure tendency St for E_LAN0.10, E_SAN1.25, E_LAN0.10SAN1.25NW,
and E_LAN0.10SAN1.25, averaged over all ensemble members for the period 00:00 UTC 3 June to 00:00 UTC 4 June.
Recall that the assimilation window is 1 hr.
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Figure 11. Pairwise comparison (exp1 vs. exp2) of relative differences (in percentage [%]) of the CRPS for relative humidity, temperature, and u and v
components of horizontal wind (from top to bottom) in Study 1. The relative difference is calculated by the formula (CRPS(exp1)−CRPS(exp2))

(CRPS(exp1)+CRPS(exp2))∕2 ∗ 100, where
CRPS(exp1) and CRPS(exp2) denote the CRPS values of the first and second experiments, respectively, and then averaged over all forecast lead times. The
observations used for verification are upper air observations, and the scores are aggregated over all initial times. From left to right are the comparisons between
E_LAN0.10 and E_SAN1.25, between E_LAN0.10SAN1.25NW and E_LAN0.10, and between E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW, respectively.
The color of green means that exp1 is better, and red means that exp2 is better. CRPS = continuous ranked probability score.

convection and lead to poor quality of forecasts, but in this case it seems that “noisy” model states not only
provide more convection-friendly conditions but also surprisingly reduce spurious convection as shown
below. It can be also seen that E_LAN0.10SAN1.25NW is more imbalanced than E_LAN0.10SAN1.25 as
expected.

To demonstrate the performance of 6-hr ensemble forecasts, the continuous ranked probability score (CRPS,
Hersbach, 2000) is computed. The CRPS is defined as the integrated squared difference between the
cumulative density function (CDF) of forecasts and observations:

CRPS = ∫
+∞

+∞
[F𝑓 (x) − Fo(x)]2dx, (4)

where Ff and Fo are CDFs for forecasts and observations, respectively. The CRPS is regarded as a mea-
surement of error for probabilistic prediction, it ranges from 0 to infinity with lower values representing
a better score and the value of 0 indicates a perfect forecast accuracy. Figure 11 compares pairs of experi-
ments and illustrates the vertical profiles of relative differences (in percentage [%]) of the CRPS for relative
humidity, temperature, and u and v components of horizontal wind. The CRPS is computed for all 6-hr
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Figure 12. Pairwise comparison (exp1 vs. exp2) of vertical profiles of relative differences (in percentage [%]) of the CRPS for 2-m relative humidity, 2-m
temperature and 2-m dew point temperature, and 10-m horizontal wind and pressure (from top to bottom) in Study 1. The relative difference is calculated by
the formula (CRPS(exp1)−CRPS(exp2))

(CRPS(exp1)+CRPS(exp2))∕2 ∗ 100, where CRPS(exp1) and CRPS(exp2) denote the CRPS values of the first and second experiments, respectively. The
observations used for verification are SYNOP observations, and the scores are aggregated over all initial times. From left to right are the comparisons between
E_LAN0.10 and E_SAN1.25, between E_LAN0.10SAN1.25NW and E_LAN0.10, and between E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW, respectively.
The color of green means that exp1 is better, and red means that exp2 is better. CRPS = continuous ranked probability score; SYNOP = synoptic surface stations.

ensemble forecasts (note that forecasts are daily initiated at 10:00, 11:00, … , 17:00 and 18:00 UTC), veri-
fied against upper air observations. For the pair of E_LAN0.10 and E_SAN1.25, E_LAN0.10 is better than
E_SAN1.25 at most levels for relative humidity; E_LAN0.10 is better (worse) than E_SAN1.25 in the lower
(upper) atmosphere for temperature, and it is almost the opposite for horizontal wind. For the pair of
E_LAN0.10SAN1.25NW and E_LAN0.10, E_LAN0.10SAN1.25NW is better than E_LAN0.10 at most levels
for all variables except relative humidity. For the pair of E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW,
no experiment is certainly better than the other. Figure 12 also compares relative differences of the CRPS
values as a function of forecast lead time, the variables (2-m relative humidity, 2-m temperture, 2-m tem-
perture dew point, 10-m horizontal wind, and pressure) are verified against surface SYNOP observations.
For the pair of E_LAN0.10 and E_SAN1.25, E_LAN0.10 is considerably better throughout the forecast lead
time for all variables except the first hour for horizontal wind. For the pair of E_LAN0.10SAN1.25NW
and E_LAN0.10, E_LAN0.10SAN1.25NW is advantageous for all variables, especially for pressure (almost
5.0%), and the advantage seems to decreases gradually with the forecast lead time. For the pair of
E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW, no significant differences can be recognized for all vari-
ables. In total, based on CRPS values it can be stated that E_LAN0.10 is better than E_SAN1.25 for surface
variables, E_LAN0.10SAN1.25NW is better than E_LAN0.10 for both surface and upper air variables, and
E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW are very comparable.

Figure 13 compares 6-hr ensemble forecasts of E_LAN0.10 and E_LAN0.10SAN1.15NW by means of radar
reflectivity composite of elevation 0.5◦. The simulated reflectivities of the ensemble are represented by prob-
ability, defined as ratio of the number of ensemble members that exceed the given threshold value (here
20 dBZ) divided by the ensemble size. The ensemble forecasts are initialized at 12:00 UTC 6 June 2016. In
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Figure 13. Six-hour evolution of reflectivities from the lowest elevation 0.5◦, starting at 12:00 on 6 June. (first column)
Observations; (second and third columns) probabilities of E_LAN0.10 and E_LAN0.10SAN1.25, defined as the number
of ensemble members exceeding the threshold value 20 dBZ (∼ 0.6 mm/hr) divided by ensemble size.

observations, a number of scattered convective cells can be seen in the middle of domain initially. The whole
precipitation system weakens a bit in the first hour and then strongly intensifies at the third hour before it
rapidly decays at the sixth hour. Within the 6 hr, the precipitation system stays fairly stationary. In compar-
ison with observations at the initial time, except for the overestimation of the precipitation in the southern
part, vicinities of all convective cells with observed reflectivity ≥ 20 dBZ are covered by high probabilities (≥
50 %) of ensemble members of E_LAN0.10, which means an appropriate representation of the precipitation
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Figure 14. Verification of 6-hr ensemble forecasts against radar-derived precipitation rate for Study 1. (left column)
The first to third panels illustrate the FSS values of experiments for the threshold value of 1.0 mm/hr as a function of
forecast lead time for different scales of 14, 70, and 140 km, respectively. The fourth panel illustrates the FAR values for
the threshold value of 1.0 mm/hr. (right column) the same as the left-hand side but for threshold value of 5.0 mm/hr.
Each FSS (FAR) value is computed as an average over all 63 forecast runs (the study period contains 7 days, and each
day has nine forecast runs). The lines are marked as filled dots at the forecast lead times where the differences
compared to E_LAN0.10 are statistically significant at 95% confidence intervals after 10,000 bootstrap resamplings
based on 63 difference samples. FSS = fractions skill score; FAR = false alarm rate.
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Figure 15. The same as Figure 11 but for Study 2.

system by the ensemble. Similar can be seen also for E_LAN0.10SAN1.15NW. For 1-hr forecast, it is obvi-
ous that the area with high probabilities (≥ 50 %) has significantly reduced, (i.e., the lifetime of individual
convective cores is short and less than 1 hr for most cores and the practical predictability is very limited for
individual convective cores), most of convective cells are represented by the ensemble of E_LAN0.10 with
probabilities ranging from 30% to 50 %. Comparatively, convective cells are reproduced by a higher fraction
of ensemble members (probabilities ranging from 40% to 60 %) in E_LAN0.10SAN1.15NW. This advantage
of E_LAN0.10SAN1.15NW is also evident for 3-hr forecasts. For 6-hr forecasts, the predictability is already
low and it is difficult to tell which one is better. This visual comparison indicates a better representation of
convective cells by the ensemble of E_LAN0.10SAN1.15NW than that of E_LAN0.10 in ensemble forecasts,
at least up to 3 hr. In the following, objective forecast verification scores are used to compare the performance
of experiments in ensemble forecasts.

Figure 14 shows the verification of all 6-hr ensemble forecasts against radar-derived precipitation rate, using
the FSS values, as function of forecast lead time for different scales of 14, 70, and 140 km and thresh-
old values 1.0 (light rain) and 5.0 mm/hr (moderate rain). For 1.0 mm/hr and 14 km, E_LAN0.10SAN1.25
is considerably better than E_LAN0.10 with statistical significance throughout 6 hr. E_LAN0.10SAN1.25
is also better than E_SAN1.25 before they approach after 4 hr, while E_LAN0.10SAN1.25 is identical
to E_LAN0.10SAN1.25NW until 3 hr and then becomes slightly superior. For 70 km, E_SAN1.25 is the
best, followed sequentially by E_LAN0.10SAN1.25, E_LAN0.10SAN1.25NW, and E_LAN0.10. Similar pat-
tern can also be seen for 140 km although the differences are much larger. For 5 mm/hr and 14 km,
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Figure 16. The same as Figure 12 but for Study 2.

E_LAN0.10SAN1.25 is slightly better than E_LAN0.10SAN1.25NW and clearly better than E_SAN1.25 and
E_LAN0.10 with statistical significance throughout 6 hr. For both 70 and 140 km, E_LAN0.10SAN1.25 is
slightly better than E_LAN0.10SAN1.25NW and E_SAN1.25 and much better than E_LAN0.10.

Figure 14 also compares the FAR values of precipitation for threshold values 1.0 and 5.0 mm/hr. The FAR is
the number of false alarms divided by the total number of events forecast. Rather than spatial comparisons
between forecasts and observations as the FSS does, the FAR makes point comparisons. It ranges from 0 to
1 and the perfect score is 0. For 1.0 mm/hr, E_LAN0.10 is slightly better than E_SAN1.25 in the first 3 hr
and then becomes slightly worse afterward. E_LAN0.10SAN1.25NW is considerably better than E_SAN1.25
and E_LAN0.10 at the beginning and gets close to them with increasing time. E_LAN0.10SAN1.25 is evi-
dently the best, which is identical to E_LAN0.10SAN1.25NW in 3 hr and becomes slightly better afterward.
For 5 mm/hr, E_LAN0.10 and E_SAN1.25 are quite comparable. E_LAN0.10SAN1.25NW is considerably
better than E_LAN0.10 and E_SAN1.25. E_LAN0.10SAN1.25 is close to E_LAN0.10SAN1.25NW up to 2 hr
and then becomes slightly better. Since a larger FAR value indicates more spurious convection, it can be
concluded from Figure 14 that both E_LAN0.10 and E_SAN1.25 results in much more spurious convection
based on the FAR values of ensemble forecasts. Based on the FSS values, E_LAN0.10 may be slightly better
than E_SAN1.25 for 1.0 mm/hr, while E_SAN1.25 is much better than E_LAN0.10 for 5.0 mm/hr. Over-
all, E_LAN0.10SAN1.25 produces the best ensemble forecasts based on the FSS values for all precipitation
rates and scales accounted for. In addition, E_LAN0.10SAN1.25 also results in the least spurious convec-
tion. E_LAN0.10SAN1.25NW is comparable to E_LAN0.10SAN1.25 in the first few hours and degrades
considerably later on.

Last but not least, it should be mentioned that we have also performed experiments in which we adjusted the
SAN by perturbing model variables only at places with higher reflectivity (Dowell & Wicker, 2009) or larger
reflectivity innovation (Sobash & Wicker, 2015) as done for smoothed random Gaussian noise. However, no
satisfactory results compared to E_LAN0.10SAN1.25 could be achieved (not shown). Although the reason
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Figure 17. The same as Figure 14 but for Study 2.
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has not been explored elaborately, it may be related to the limitation of perturbed area which may cause
strong inconsistency of model states between perturbed and unperturbed areas.

4.2. Study 2
Similar to Figure 11, Figure 15 compares vertical profiles of the CRPS of experiments in pair (veri-
fied against upper air observations) but now for Study 2. For the pair of E_LAN0.10 and E_SAN1.25,
E_LAN0.10 is better than E_SAN1.25 at most levels for relative humidity; E_LAN0.10 is better (worse)
than E_SAN1.25 in the lower (upper) atmosphere for temperature and u component, and no exper-
iment is evidently better for v component. For the pair of E_LAN0.10SAN1.25NW and E_LAN0.10,
E_LAN0.10SAN1.25NW is better than E_LAN0.10 at most levels for all variables except relative humidity.
For the pair of E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW, no experiment is certainly better than the
other. Similar to Figure 12, Figure 16 shows comparisons of 6-hr ensemble forecasts of experiments in pair
by means of the CRPS (verified against SYNOP observations). For the pair of E_LAN0.10 and E_SAN1.25,
E_LAN0.10 is much better than E_SAN1.25 for all variables. For the pair of E_LAN0.10SAN1.25NW and
E_LAN0.10, E_LAN0.10SAN1.25NW is much better than E_LAN0.10 for pressure; slightly better for 2-m
relative humidity, dew point and 10-m horizontal wind; and slightly worse for 2-m temperature. For
the pair of E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW, E_LAN0.10SAN1.25 is much better than
E_LAN0.10SAN1.25NW for pressure and slightly better for the other variables except 2-m temperature after
3 hr. Compared to Figure 12, the positive impacts of w perturbations could be explained as follows: the
perturbations of u, v, and w are physically consistent (approximately divergence free). This means that if
u, v, and w are perturbed together, the effect on w will be more strong and persistent during the early stage
of the forecasts as compared to leaving out w perturbations. Under weak forcing conditions, convection is
mainly caused by local thermal instabilities and characterized by the presence/absence of local tempera-
ture inversions and/or near-surface moisture contrasts. For strong forcing conditions, instabilities are more
homogeneous over larger areas (less influenced by local conditions and less local extremes) and convec-
tion lives relatively longer, which may amplify the effects of w perturbations. Generally speaking, it can
be concluded that E_LAN0.10 is better than E_SAN1.25 for surface variables, E_LAN0.10SAN1.25NW is
better than E_LAN0.10 for both surface and upper air variables, and E_LAN0.10SAN1.25 is better than
E_LAN0.10SAN1.25NW for surface variables.

Regarding the FSS values of 6-hr ensemble forecasts for precipitation rate, it is shown in Figure 17 that,
for 1.0 mm/hr, E_LAN0.10SAN1.25NW and E_LAN0.10SAN1.25 are almost the same for scale of 14 km.
Both are slightly better than E_LAN0.10 which is considerably better than E_SAN1.25; however, differences
among experiments become statistically insignificant with the increasing time. Similar behavior is also vis-
ible for scale 70 and 140 km except that for 140 km E_LAN0.10 loses more skills in the last 3 hr. For 5.0
mm/hr, E_LAN0.10SAN1.25NW is slightly better than E_LAN0.10SAN1.25 at the beginning and then both
are strongly overlapped. The both are slightly better than E_LAN0.10 throughout the forecast lead time.
Almost the same behavior can be also seen for 70 and 140 km, although E_LAN0.10SAN1.25NW seems to be
more advantageous at the beginning. For all scales, E_SAN1.25 is worse than E_LAN0.10SAN1.25NW and
E_LAN0.10SAN1.25 in the first few hours, but it approaches and becomes even better with the increasing
time. With respect to the FAR for 1.0 mm/hr, E_LAN0.10SAN1.25 is better than E_LAN0.10SAN1.25NW,
followed by E_LAN0.10 and E_SAN1.25, while E_LAN0.10 is considerably better than E_SAN1.25 in
the first 3 hr before they approach. For 5.0 mm/hr, E_LAN0.10SAN1.25 is the best as well, followed by
E_LAN0.10SAN1.25NW. E_LAN0.10 and E_SAN1.25 are the same in the first 2 hr, and then the latter one
becomes better. To conclude, this is similar to what has been seen in Figure 14. E_LAN0.10 is better than
E_SAN1.25 for 1.0 mm/hr, but E_SAN1.25 is better for 5.0 mm/hr based on the FSS and FAR values of ensem-
ble forecasts. Overall, E_LAN0.10SAN1.25 and E_LAN0.10SAN1.25NW have better performance. Both are
comparable based on the FSS values for all precipitation rates and scales considered, while the latter one
may be associated with slightly more spurious convection. However, it can be seen that the advantage of
E_LAN0.10SAN1.25 over E_LAN0.10 is not as significant as in Study 1 due to strong forcing conditions.

5. Conclusion and Outlook
In this work, we incorporate the small-scale additive noise based on random samples of model truncation
error, combining it with the large-scale additive noise based on random samples from global climatological
atmospheric background error covariance (Zeng et al., 2018), to account for model error on multiple scales
in convective-scale data assimilation. A series of experiments have been executed in the framework of the
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operational KENDA system at the DWD for a 2-week period in Germany with different types of synoptic forc-
ing of convection (i.e., strong or weak forcing). It is shown that the combination of the large and small-scale
noise results in a larger background ensemble spread than the application of the large-scale noise only and
the analysis ensemble of the combination exhibits more small-scale variability and is more energetic at small
scales. In terms of the quality of short-term 6-hr forecasts, the combination produces more accurate ensem-
ble forecasts than the large-scale noise only based on conventional surface and upper air observations. It also
produces better precipitation forecasts with less spurious convection under both weak and strong forcing
situations, while the improvement is especially significant in the weak forcing situation. This may be due
to the fact that extra energy is added to smaller scales and more small-scale variability is available, which
favors creation of strong local convergence and thus occurrence of convection, and this effect is especially
important for the weak forcing situation. It is also shown that additionally perturbing vertical velocity in the
small-scale noise part of the combination can further improve the balance of model states and the quality
of precipitation forecasts. Moreover, it is found that the application of small-scale noise only may produce
better forecasts of precipitation than the large-scale noise, but it results in less accurate ensemble forecasts
if verified against conventional surface observations. In total, it can be concluded that the combination has
the best performance in short-term ensemble forecast under all analyzed synoptic forcing conditions due to
its multiscale representation of model error.

Currently, the training period of model truncation error is chosen from convective days in summer. The prop-
erties of model truncation error may differ in a different season, for example a training period in winter may
be needed for case studies of winter storms. There are some new approaches as the Adaptive Background
Error Inflation (Minamide & Zhang, 2019), which attempts to treat model error and non-Gaussian sampling
error adaptively, as well as a new approach that allows for using more ensemble members in the treat-
ment of model error than forecasted with additive noise (Sommer & Janjić, 2018). These could be explored
for convective scale data assimilation in the future together with the Adaptive Observation Error Inflation
(Minamide & Zhang, 2017). We plan to supplement or compare the additive noise with other approaches
that account for subgrid-scale model error, such as physically based stochastic perturbation scheme for tur-
bulence (Kober & Craig, 2016; Rasp et al., 2018), which is flow dependent, and an advanced warm bubble
technique which can automatically detect and trigger missing convective cells. The results will be presented
in another article.
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