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Preface

The chemistry of hexavalent uranium has attracted a lasting interest since its discovery in
Saxonian pitchblend from Johanngeorgenstadt near Freiberg/Germany by the analytical chemist
M.H. Klaproth in 1789. Among those elements occurring naturally in weighable amounts,
uranium displays some unique properties especidly in its hexavalent state. Its linear molecular
structure in turn gives hexavalent uranium an attractive potentia to provide insight into a wide
range of fundamental and applied scientific research areas.

During the past fifty years mainly nuclear application research of uranium was focused on.
Uranium chemistry is seen nearly exclusively under the aspects of exploration, exploitation,
nuclear fuel production, burn up, reprocessing and disposal of nuclear waste. The promising
potential of uranium with respect to other aspects of science stood back.

Due to politically motivated, strategic interest in uranium physicochemical and nuclear
properties a huge amount of literature is available. A present-day chemist is faced with the task
to get a survey on this literature before contributing to this field. Research work described in
the present report is based on careful study of about 1500 references on uranium chemistry
from open and grey literature, collected during the past decade. All literature is available in
copy at hand.

Nevertheless, researchers interested in uranium face the problem of often contradictory and
even mutually exclusive interpretations of one and the same experimental observation.
Attempts to resolve these contradictions and to design experiments that are able to give
decisive evidence are scarce. Often, valuable data is forwarded, but apparently never applied to
actual problems. To give an illustrating example, Rush & Johnson (1963) have evaluated single
component spectra of hydrolysis species (UO,),(OH),*" and (UO,)s(OH)s" by early application
of digital data treatment techniques in an still today admirable approach. The present report
validates these spectra by a completely independent approach. Surprisingly however, after
publication of Rush & Johnson’s work, application of these spectra is not to the knowledge of
the author. As a matter of fact, these valuable data have never been played the role they
deserve.

The unique spectroscopic properties of 5f elements have contributed heavily to our current
understanding of fundamental metal ion behaviour in nature. Speciation is a central topic. Even
though the ability to obtain validated absorption and emission spectra of well-defined uranium
species opens a wide field of new research and understanding, this report limits itself to
speciation. Speciation of uranium is of considerable interest e.g. in remediation of former
uranium mining areas in eastern part of Germany as well as many other countries in the world.
It must be emphasized that the borderline between fundamental research, applied research and
practical application is virtualy non-existent here.

To uncover the speciation potential of uranium has been a mgjor motivation of the author’s
scientific efforts during the past seven years. With support by Deutsche Forschungs-
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gemeinschaft, Technische Universitét Bergakademie Freiberg and Universitét Passau as well as
cordial collaboration with Advanced Science Research Center at Japan Atomic Energy
Research Institute Toka Establishment more than a dozen communications have been
published that opened access to an application especially of the spectroscopic properties of
hexavaent uranium. Among other results, previoudy enigmatic luminescence behaviour of
U(VI) in agueous solution could be explained imambiguoudy, single component UV-Vis
absorption spectra of [UO,CO3(H;0)s], [UO(COs)2(H20)2)*, [(UO)(OH).]* and
[(UO,)s0(0OH)3]" could be evaluated and applied succeesfully to quantitative resolution of
multicomponent uranium(V1) spectra. Fundamental thermodynamic data e.g. for description of
solubility behaviour of UO; 2 H,O(s) could be obtained.

Prior to these studies, methods to determine composition of hydrolyzed and carbonate
containing U(VI) solutions in a reliable and quantitative manner have not been available. Due
to the high tendency of U(V1) to form hydrolysis and carbonato species both under natural and
laboratory conditions, the inability to obtain reliable information on solution composition im-
posed a mgjor obstacle in understanding agueous behaviour of uranium.

These points will be discussed in detail in the following report. Discussion of experimental
findings and interpretations will successively forward new results, that will be validated further
by relations and correlations within results from separate experiments. Based on consistencies
and inconsistencies obtained from this analysis, the resulting perception of U(VI) agueous
chemistry will be presented in away that has not been not possible on basis of previous data.

Application of computer-based multivariate chemometric and statistical techniques, e.g.
Monte Carlo methods and non-parametric statistics, has been instrumental to achieve this goal.
Subsequent analysis has forwarded a wealth of new insight and prospects that open the
application of spectroscopic speciation techniques to an understanding of uranium(V1) ageuous
solution chemistry.

At the end of the preface it is to point out that the findings reported in the sequel are not
only of scientific interest offering further interesting insight in agueous chemistry of metal ions.
The results are also of fundamental importance to contemporary topics of outmost actuality
like disposal of nuclear wastes and remediation of former mining area, especialy of uranium
mining areas. In addition, present work opens new access towards application of uranium e.g.
in the investigation of still poorly understood processes of pyrite oxidation or description of
concentrated electrolyte solution like evaporating sea water.

Freiberg and Passau/Germany in september 1997
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1. Fundamental Properties of Hexavalent Uranium

The chemistry of uranium in agueous solution is governed by the dioxo cation UO,2*
(Langmuir 1978, Zachariasen 1948). Structural analogs are known from the actinides NpO,2*,
PuO,2* and AmO,2* only, because the formal analogous transition group dioxo cations e.g.
WO,2*, MoO,2* and CrO,2* are not linear, thermodynamically and kinetically more labile
compared to UO,* and show fundamental differences in the physicochemica properties
(Tatsumi & Hoffmann 1980, Denning 1992, Schréder 1975). The actinide analogs are a-
emitters with partly high specific activities, whose behaviour can be studied only under con-
sderable security measures. Especially PuO,2* exhibits a considerable stability under
conditions of natural aquatic systems. Its portion in the toxicity inventory of a nuclear disposal
ste is by far higher than that of uranium. In case of direct disposal plutonium even determines
the toxicity inventory (Levi et a. 1990). Reliable thermodynamic data therefore are of crucia
importance to ensure required predictive power of long term safety analysis of nuclear waste
disposal sites in deep geologica formations. As can be visualized by comparing proposed E;-
pH diagrams of Pu (e.g. (Brookins 1984, Lemire & Tremaine 1980, Krauskopf 1986, Brookins
1990)), the required reliable knowledge is not yet available. Uranium is the only analogue to be
handled outside a controlled area with reasonable costs.

In agueous solution, uranium forms oligomeric hydrolysis species. Beside the
unambiguously characterized (UO,),(OH),2* species, the following additional oligomeric and
monomeric hydrolysis species are discussed : (UO,)3(OH)s*, (UO,)5(OH),2*, (UO,),0OH3*,
(UO,)3(0OH)7, (UO,),4(OH),*, UO,0OH*, UO,(OH),°, UO,(OH)5 and UO,(OH),% (Baran
1992, IAEA 1992, NEA 1992). In addition to the well-known monomeric carbonato species
UO,CO5°, UO,(CO3),% and UO,(CO5)5* an oligomeric carbonato compound is reported:
(UO,)5(COy)6b (Ciavatta et a. 1981). This variety especialy in hydrolysis species has been
proposed mainly by evaluation of potentiometric titrations (Sillén 54a, Sillén 1954b, Dunsmore
et a. 1963). Formation of these speciesisinferred mainly from numerical modelling of titration
curves using the criterion of best fit. With afew exceptions like (UO,),(OH),2*, (UO,)3(OH)s"
and UO,(CO3)5*, where UV-Vis spectra (Rush & Johnson 1963, Baran 1965, O'Cinneide et
al. 1975, Meinrath 1997b), structures from solution X-ray studies (Aberg 1969, Aberg 1970)
or EXAFS radial distribution studies (Allen et a. 1995) are discussed, no independent evidence
isavailable for these species.

1.1 Nuclear properties

Atomic number of uranium is 92. All isotopes are radioactive. Six isotopes show half lifesin
the order of years: 232U (72 a), 233U (1.585x10° a), 234U (2.44x10° a), 235U (7.038x108 a),
236 (2.3416x107 Q@) and 238U (4.47x10° a). Naturaly occurring nuclides of uranium
(abundance) are 234U (0.005 %), 235U (0.72 %) and 238U (99.276 %). 235U and 238U are
primordial nuclides, while 234U is a 238U daughter.
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1.2 Electron configuration

The electron configuration of atomic uranium is [Rn] 7s? 6d! 5f3. The sixfold charged ion
US* has configuration [Rn] 7s? 6d0 5f0 (Cordfunke 1969). Uranyl(VI1)-compounds exhibit
correspondingly a weak temperature independent paramagnetism in solids (Belova et a. 1961)
and solutions (Baran & Tympl 1962, Day & Venanzi 1966).

1.3 Redox Properties

The known redox states of uranium are U(ll) (Mikeev 1989), U(lIl), U(IV), U(V) and
U(VI). The reduction potentials are given in Fig. 1.1.

-1.35

0.28 -1.60

UUE-‘- U19 UG; D.ET U.-_'|.+ 'ﬂE1 U3+ '4? Uz-l- -U'I

Fig. 1.1 : Standard reduction potentials E, of uranium (calculated from Fuger & Oetting
(1976)). U2+ reduction potentials are calculated according to David et a. (1995). For

formation of U2, see (Mikeev & Kamenskaya 1991, Morss 1995).

Under conditions of natural aquatic systems the states U(VI) and U(1V) only are stable.
U(lV) is extremely insoluble. Hence the solution behaviour under those conditions is
dominated by U(VI). The extreme contrast in the solubilities of the states U(VI) and U(IV)
determines whether uranium is mobilzed, precipitated, sorbed or immobilized in a given
agueous system.

1.4 Hydration Number of Uranyl(VI)

The chemistry of U(V1) is nearly exclusively dominated by the linear dioxo cation UO,2*.
Only few exceptions are known, with negligible importance in the present context, e.g. UFg
(Ruff & Heinzelmann 1909), UClg (Zachariasen 1948) or d-UO3(s) (Wait 1955, Weller et al.
1988). From direct determinations of the hydration number of UO,2*(ag), discrepant
conclusions are reported. From studies of "H-NMR in H,O/acetone mixtures between -85 °C
and -100 °C (Fratiello et a. 1969, Fratiello et al. 1970) and -70 °C (Ikeda et a. 1979), resp. a
hydration number of 4 is evaluated (Tomiyasu & Fukutomi 1982). "H-NMR studies at -90 °C
resulted in a hydration number of 6 (Sherbakov & Sherbakova 1976). From analysis of IR-
spectra of perchlorate hydrates and aqueous perchlorate solutions, a species [UO,(H,0)s]2
was reported (Vdovenko et al. 1964). MCD spectra (Gorller-Walrand et al. 1982, Gorrler-
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Walrand & Colen 1982), X-ray diffraction of 1 M UO,(ClO,), solutions, 1H-NMR spectros-
copy in H,O/acetone-dg mixtures at -80 °C (Aberg et a. 1983) as well as potentiometry and
Raman spectroscopy (Azenha et a. 1988) resulted in a hydration number of 5. Possible
sources of errorsin "H-NMR investigations are outlined (Aberg et al. 1983).

No convincing evidence for coordination of U(V1) by perchlorate ions in aqueous solutions
is available (Vdovenko et a. 1964, Johannson 1974). In the following chapters, a species
[UO,(H,0)5]?* is assumed as hydrated UO,2*. This species will be referred to as ,, free uranyl

ion" U022 (-

1.5 Properties of Uranyl Entity UO,2*

The linear entity O-U-O was observed as characteristic unit in more than 180 single crystal
structure determinations (Denning 1983, Lecigewicz et al. 1995). Deviations from 180°
linearity caused by crystal symmetry were larger than 5° only in a small amount of compounds.
The maximum deviation reported was 19° (O-U-O = 161°) in UO,(CIQ,4), - 7 H,O (Alcock &
Esperas 1977). The linear entity is both thermodynamically (Denning 1992) and kinetically
(Gordon & Taube 1961) extraordinarily stable. Isotopic *°0/*®0 exchange experiments in 0.94
M and 0.094 M HCIO, at 25 °C and = 3.79 indicate exchange rates for axial uranyl oxygens
of k =5x10° mol-1 | s1. This rate corresponds to half lifes in the order of 4x10° hr (0.094 M
HCIO,) and 4x10* hr (0.94 M HCIO,), resp. Exchange of axial oxygensis catalyzed by traces
of UO," (Gordon & Taube 1961, Rabideau 1967).

Affinity of hexavalent uranium towards oxygen under formation of alinear uranyl(V1) entity
is highly specific. The insertion reaction of atomic uranium into O is strongly exothermic with
-9.7 eV. In contrast, uranyl-analogous compounds with other ligands than oxygen in axia
position are rare and unusual. An isosteric analog of UO,™, linear UN,, has been recently
reported to form in gas phase reaction U + N, -> N-U-N. It could be characterized by IR
spectroscopy in matrix isolation technique in argon at 27 - 32 K (Hunt et al. 1993). This
reaction is endothermic. A further UO,2* analogs with linear O-U-N entity has been reported
recently in the crystal structure of PPh,-[UOCI,{NP(m-Tol)s}]* (Ph = phenyl, m-Tol =
CeH,m-CH3) (Brown et al. 1994). This substance is stable in contact with the air. The bond
angle O-U-N is 179°.

1.6 Coordinative Properties

The ion UO,2* was reported only very recently uncoordinated , bare* in the gas phase
(Cornehl et al. 1996). Otherwise, UO,** is only found coordinated in the plane equatorial to the
axia oxygens. Coordination occurs exclusively equatorial to the axial uranyl oxygens by four,
five or six coordinating ligands. The preferred equatorial coordination is pentagonal (Evans
1963, Denning 1983). Coordination number 4 is found mainly in presence of sterically
demanding ligands, e.g. bromide in Cs,UO,Br, (Mikhailov & Kuznetsov 1971) or triphenyl-
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phosphineoxide in UO,Cl,(OP(CgHs)3), (Bombieri et a. 1978). Coordination number 6 is
observed in presence of multidentate ligands where coordination angle between the , bite" of
the ligand and coordinated uranium is smaller than 60°.

Tendency for pentagonal coordination of U(VI) is quite high. A series of compounds, where
U(VI) was assumed to be equatorially coordinated hexagonally on basis of powder diffraction
data before 1970 have been found as pentagonally coordinated from single crystal studies alter.
Examples are UO,(HCOO), - H,O (Dieke & Duncan 1949, Gorrler-Walrand & de Jagere
1972) where single crystal diffraction revealed pentagona coordination (Mentzen et a. 1977),
and CsUO,(HCOO), (Barclay et al. 1965) whose presumed hexagonal coordination (Gorrler-
Walrand & de Jagere 1972) was characterized to be pentagona (Mentzen 1977).

Bond lengths of axial oxygens in uranyl(VI) compounds vary from 150 pm in
UO,(CyHgNO), - CoH,NO (Hall et a. 1967) and 208 pm in a-UO; (Greatorex et a. 1972).
The mean value from 180 crystal structure datais 177 pm. There seems to be no clear relation-
ship between equatoria coordination and axia bond lengths in the uranyl(VI) entity (Denning
1983). With exception of the above aready mentioned compounds, deviations from linearity
are £5°. Bond lengths of equatorial ligand oxygens with central uranium vary between 235 pm
and 255 pm. Sterically demanding ligands like halogenide ions (with exception of fluoride)
prefer tetragonal coordination. Coordination with by one bidentate ligand with , short bite” is
usually pentagonal as e.g. in UO,(CH;COO), - 2H,0. Bidentate coordination with two ligands
and coordination angle close to 70° (e.g. oxaate) however prefer likewise pentagonal
coordination.

Coordination by two bidentate ligands with ,,short bite" is usually associated with hexagonal
coordination around uranyl (V1) as e.g. in UO,(NO3),(TEP), (Kanellakopulos et al. 1993) as is
in case of three bidentate ,, short bite" ligands e.g. in (NH3)sUO5(COs)5 (Graziani et al. 1972),
K3NaUO,(CO,)5 (Mazzi & Rinaldi 1960, Mazzi & Rinaldi 1961) or RbUO,(NO3); (Barclay et
al. 1965).

2. The Electronic Structure of UO,*

Spectroscopic investigations of a compound in the UV-Vis region can be rationalized and
systematized by a model of the electronic structure of this compound. The uranyl ion is a
molecular unit and therefore a considerable number of parameters enter in a numerical
description of its electronic structure. Beside electronic transitions, vibrational and rotational
transitions as well as their mutual coupling have to be taken into account. The spectroscopic
properties of the uranyl(V1) ion U0, have been intensively investigated during development
of the US atomic bombs in the framework of ‘Manhattan project’. These spectroscopic in-
vestigations are summarized by Dieke & Duncan (1949) and Rabinowitch & Belford (1964).

Discussion of the electronic structure of the UO,*" entity was lasting and discrepant. The
number of electronic transitions, the energetic sequence of bonding and non-bonding orbitals
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as well as the cause of the very weak oscillator strength of the low energy electronic transition
have been controversially discussed. Different mutually exclusive interpretations have been
offered (Jargensen & Reisfeld 1982, Denning 1992). A selection of contributions will be briefly
abstracted in the following. Due to the great number and variety of contributions, the selection
isinevitably subjective.

A simple model considering only s bonds (Eisenstein & Pryce 1955) was extended by p-
bonds (M°Glynn & Smith 1961a). MO calculations based on combination of U(VI) and O(ll)
valence orbitals result in six symmetry adapted molecular orbitals with following symmetriesin
Dyp 1 (U-7s, U-6dg, O-2pp) : s, (U-f, O-2pg) : s, (U-5F4q, O-2p4g) 1 py &d (U-6d,q, O-2p4q)
! pg- The uranium valence orbitals 5f.,, 5f,3 and 6d,, form non-bonding orbitals of symmetry
d,, f and dy, resp. The bonding orbitals sy, s, pg and p, accept twelve valence orbitals that

are formally 2p electrons of O(I1). The resulting ground state symmetry is total symmetric 'Sg".
The treatment of the electronic structure with approaches and methods of increasing
sophistication resulted in differing orders of molecular orbitals in the ground state. From
analyses of absorption and emission spectra four (Volod ko et al. 1966) to twelve (Schwarz
1985) electronic transitions were concluded. From theoretical analysis, Jargensen concluded
14 and 56, resp. electronic transitions depending on the actual highest occupied molecular
orbital (Jergensen 1979, Jergensen & Reisfeld 1982).

The causes for the very low oscillator strength of the lowest energy electronic transition
have been disputed for along time. By extensive low-temperature single crystal spectroscopic
investigations using polarized light, Zeeman splitting and isotopic shift experiments, a rather
complex structure of the low energy electronic transition of the uranyl entity has been revealed.
The current state of the art is further improved by the increasing power of numerical methods
and computers. The following section abstracts influential contributions from literature,
published after establishing uranium as the third element of the 5f actinide series and
homologue of neodymium at about 1950 (Hahn 1962, Seaborg 1967).

2.1 Chronological Survey of Contributions Dealing with the Electronic Structure of
U022+

The assumption of empty 5f orbitals contributing to bonding in the linear O-U-O entity as
well as within central uranyl and ligands (Glueckauf & M°Kay 1950, Katzin 1950, Connick &
Hugus 1952) gave rise to a first and qualitative insight into the properties of uranyl(VI). A
simplified semi-quantitative model on basis of a MO treatment of orbitals within the U0,
entity was suggested by Eisenstein & Pryce (1955). This model rendered possible an
interpretation of magnetic propertiesin actinyl(V1) ions UO,”*, NpO,**, PuO,”* and AmO,*".
Only s bonding between sp, hybridized oxygen atoms in axia position to uranium were taken
into account. Symmetric linear combination of both O-sp, hybrid orbitals is bonded to 6dy/7s-
hybrid orbital of uranium, while its asymmetric combination is bonded to U-5f, orbital. These
s bonds are filled with four electrons of UO,”*. The neglect of possible p bonding
contributions is discussed. By applying this simple model to magnetic properties of UO,™, the
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magnitude of the weak paramagnetism of U(V1) could be understood to result from angular
momentum of non-bonding 5f.; character mixed into the HOMO.

Coulson & Lester (1956) discuss f orbital hydridization of uranyl valence orbitals as a
possible description for ligand interaction in equatorially hexagonal coordinated [UO,(NO5)4].
Such a description was found possible only if f orbitals are included into the hydridization
scheme.

Jergensen (1957) interpret weak absorption bands of uranyl(V1) in the range 485 - 380 nm
and 350 - 310 nm as aresult of Laporte forbidden electronic transitions from ligand orbitals to
empty 5f orbitals of central uranium. He emphasized importance of spin-orbit interaction in
molecules containing heavy atoms like uranium and consequently excluded a spin forbidden
trangition.

McGlynn & Smith (1961a) propose an electron configuration of the uranyl(V1) ground
state. One electron MO energy levels of UO,” were calculated from Slater orbital type overlap
integrals of oxygen and uranium atomic orbitals. A total symmetric singulet lSg+ with electron
configuration (s,,")* < (s4")” < (p,)* < (py)* was found. The axial bond is formally atriple bond
however with a py bond of amost negligible strength. The weakness of the electronic
trangition is explained by a spin forbidden singulet-triplet transition. A total of five electronic
transitions have been identified.

Belford (1961) investigates contributions of 6d- and 5f-orbitals to p bonding in UO,”* based
on the MO modd of Eisenstein & Pryce (1955). Several bond schemes were found to
satisfactorily explain the weak paramagnetic susceptibility, including some schemes that do not
consider 5f orbitals at all. Therefore, f orbital contribution to bonding in uranyl(VI) is not
proven.

Belford & Belford (1961) study bond strength in uranyl by numerical calculation of sd-, pd-
, sf- and pf overlap integrals of uranium with p orbitals of oxygens. Overlap integrals of sd-
and pd reveal considerable contributions to bonding. Overlap integrals of p orbitals were found
of equal or higher strength compared to s integrals. Possibilities for strong fs bonds are
discussed.

Jezowska-Trzebiatowska & Bartecki (1964) investigate vibrational fine structure of UO,**
electronic transition in organic solvents and aqueous solutions. They conclude three electronic
transitions to levels of a split triplet state.

lsradli (1965) extended and modified the work of M°Glynn & Smith. (1961a). That
researchers started from UV-Vis spectra of uranyl nitrate in aqueous solutions. Absorption by
nitrate in the range 350 - 200 nm covered bands of uranyl and introduced inconsistency into
the interpretation given by McGlynn & Smith (1961a). Israéli reported further electronic
transitions at 34500 cm™, 42600 cm™ and 53000 cm™. A total of seven electronic transitions
were found. The ground state sequence of MO orbitalsis (s4)* < (s,,)* < (p)* < (py)”.
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Newman (1965) discussed relativistic effects on overlap integrals in uranyl(VI) electronic
ground state. Relativistic treatment was found to increase p overlap integrals. On basis of
calculated relativistic overlap integrals a tentative ground state configuration [(elg)4 < (alg)2 <
(e1)” < (ag,)’] :*Aqq (in D3g) Was proposed.

Volod' ko et al. (1967) investigate spectroscopic properties of U(VI) solids and solution
species with well-defined symmetry. Correlation of integral absorption in the range 500 - 350
nm and symmetry of equatorial coordination was observed. For non-centric coordinations Cs
and Dg, integral absorption is increased. Based on experimental results and analysis of results
and inconsistencies in (M°Glynn & Smith 1961a, 1961b), four excited electronic states were
identified. Classification of electronic levels in Dg, symmetry was proposed and discussed
relative to the interpretation given by (M°Glynn & Smith 19614a).

Newman (1967) analyzed 20 K low temperature spectra of CsUO,(NOs)5 single crystals on
basis of previoudy given interpretations (Belford 1961a, M°Glynn & Smith 19613, M°Glynn
61b, M°Glynn et a. 1961, Newman 1965). Singulet-triplet intervals are found of a magnitude
comparable or smaller than spin-orbit coupling.

Bell & Biggers (1965, 1967, 1968) analysed UV-Vis and emission spectra of UO,”*(aq) in 3
M NaClO, (0.014 M H") solution. The spectra were deconvoluted digitally into 24 Gaussian
bands in the range 179.5 nm - 500 nm. Variation of each Gaussian band as a function of pH
and temperature were analyzed. No mirror-image relationship between absorption and
emission spectra is observed. Bell & Biggers (1968) interpret absorption and emission spectra
by seven electronic transitions where two low energy transitions were observed as singulet-
triplet transition. The author emphasized that no suitable electronic model exists for this
interpretation.

Sanwal & Pant (1969) outline that spectroscopic investigations of solids and solutions
suggest severa electronic transitions give rise to the low energy electronic transition of
uranyl(VI). On basis of extensive spectroscopic investigations at ambient temperature and 80
K, evidence for at least seven electronic transitions in the range 485 nm to 255 nm is reported.
A summary of inconsistencies in the model of (M°Glynn & Smith 19614a) is given. An excited
triplet state is excluded.

Gorller-Warand & Vanquickenborne (1971, 1972) discuss the electronic structure of
uranyl(V1) on basis of absorption spectra of 25 uranyl(VI) coordination compounds with
defined symmetry. (Gorrler-Warand & de Jagere 1972a, 1972b, Gorrler-Walrand &
Vanquickenborne 1972, Gorller-Walrand & de Jagere 1973). Contributions of electron
electron repulsion (€°/ry,), spin orbit coupling (Hy,), axid field (V) and equatorial field V)
decrease in the order V,, > €r, » Hy, > V&g, Gorrler-Walrand et a. assume a LUMO
derived from the configuration (in Dyy) (S," 4" Py Pe™ (Fy d)". As aresult 14 different
excited states are possible. From group theoretical analysis the effect of coordination on each
of the excited states is evaluated and compared to spectroscopic results. Excited triplet states
contradict the results of this analysis and are excluded. The low transition moment of the
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characteristic low energy transition of uranyl(V1) is interpreted by a Laporte forbidden tran-
dtion. The HOMO is found with s ;" symmetry. The UV-Vis spectrum of uranyl(V1) is deter-
mined by transitionsf ,<-s," and d,<-s,".

Brint & McCaffery (1973) interpret magnetic circular dichroism and absorption spectra of
(BusN)UO,(NO,), in a polymer matrix at 10 K. As the most likely arrangement of occupied
MOs, 14 < 344 < & < €y, (D3y) isgiven. The low energy electronic transition results from six
transitions to triplet states °E;, and °Epg,.

Jorgensen & Reisfeld (1975) interpret the low extinction coefficient of uranyl(VI) by an
intramolecular Laporte forbidden transition from p,-HOMO to 5f orbitas. The high
contribution of spin orbit coupling to the overall energy of the molecule is pointed out, that
outweighs the energy difference between different defined spin states. Thus, interpretation of
the electronic structure of uranyl (V1) by a Russell-Saunders scheme is not suitable.

Veadl et a. (1975) correlate the split of U-6p5,, components of the 6p- spin doublets with
axial U-O bond lengths in XPS spectra of 13 U(VI) solids. The splitting increases with
increasing U-O distance. These experimental findings are corroborated by theoretical
calculations.

Boring et a. (1975) discuss semi-ab initio MSX,-SCF calculations of UO,*" electronic
ground states at three different axial U-O bond lengths. They aso emphasize importance of
relativistic effects that could not be taken into account in their study. A lSg+ ground state
resulted directly from the calculation. The energetic sequence of occupied MOsissy<p,<s,
< pg U-6p and O-2s orbitals were included into the MO treatment, in agreement with results
of Ved et a. (1975). MOs being mixed with U-6p orbitals also show considerable O-2s
participation. These orbitals therefore may not be treated as inert core electrons and must be
included into an electronic structure calculation.

Ellis, Rosén & Walch (1975) calculate the electronic ground state both relativistically and
non-relativistically by application of discrete variational (DV) method. A ground state
sequence p, < Py < Sg < S, is obtained in both cases. Inclusion of U-6p and O-2s orbital
contributions are significant.

Walch & Ellis (1976) investigate influence of equatorial ligands (point charge model) on the
electronic structure of uranyl(VI1) by relativistic Dirac-Slater MO calculations. Influence of
equatorial ligands resulted in an increase of the energy difference between ground and first
excited state. Calculations of the optical transition result in a very small energy gap of only
4000 cm™ compared to the experimental value of 20 000 - 22 000 cm™. Inclusion of
contributions due to the equatorial ligands widened the calculated HOMO-LUMO distance to
9800 cm™, somewhat closer to the experimental value.

Denning et al. (1976a) report extensive spectroscopic investigations of Cs,UO,Cl, single
crystals at 4.2 K using polarized light, °O isotopic substitution of axial oxygens and Zeeman
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effect measurements. Twelve eectronic transitions were observed in the range 20 000 cm™ to
29 000 cm'*. Argumentsin favour of as, HOMO are forwarded.

Yang et al. (1978) investigate the electronic structure of uranyl(VI) by relativistic SW-X,-
method. A comparison between non-relativistic and relativistic calculation shows that
contributions of U-6p/O-2s orbitals are mainly caused by relativistic effects. The four highest
occupied MOs are not significantly influenced by inclusion of relativistic effects and can be
correlated with their non-relativistic counterparts: 1py > 3s, > 3sy > 2p,. Comparison of
calculated relativistic energy levels by XPS results of (Vea et a. 1975) show satisfactory
agreement. HOMO-LUMO difference however is only 0.3 eV. This smal difference is
explained by neglect of influences due to equatorial ligands.

Jargensen (1979) analyze the consequences of a transition from p,-HOMO to non-bonding
f/d-f orbitalsin uranyl(V1). 56 excited states are possible. Strong spin orbit coupling leads to a
mixture of angular moments of f orbitals. Only moments paralel to the O-U-O bond
characterize a state. Discussions of possible singulet-triplet states therefore are void.

Denning et al. (1979b) present a detailed study of the uranyl(VI) electronic structure.
Analysis is based on experimenta results of (Denning et al. 1976a, Denning et al. 1979a) and
theoretical MO calculation. These non-relativistic calculations result in a s -HOMO and in a
Laporte forbidden transition.

Tatsumi & Hoffmann (1980) discuss extended Hiickel calculations of MoO,*" and UO,** to
explain the linear trans geometry in uranyl. This trans geometry differs from the bent cis
geometry of MoO,”". The preference of trans geometry is not caused by participation of 5f
orbitals but by contributions of the filled ,non-valence* 6p orbitas. Interaction between s,
and 6p, valence orbitals results in destabilization of s,". This orbital thus becomes HOMO.
Destabilization by interaction with z components of 5f orbitals results in a stabilization of
uranyl in linear geometry. This stabilization mechanism is not available for transition metals
lacking f orbitals. Hence, transition metals prefer cis geometry.

Wood et a. (1981) calculate one electron energy levels of UO,”, UO," and UO, by
relativistic MS-X,-SCF method. Experimental results of (Vea et al. 1975, Denning et a.
1976, 1979a,b) are taken into consideration. Calculations resulted in an ordering of energy
levels in agreement with experimental observations as well as a plausble HOMO-LUMO
energy difference.

Wadt (1981) compares isoelectronic structures UO,”* with linear geometry and ThO, with
bent geometry on basis of numerical calculations. Linear geometry of UO,>" is observed even
under neglect of U-6p participation, thus contradicting interpretation given by (Tatsumi &
Hoffmann 1980). The explanation suggested is a different energetic ordering of empty 6d and
5f orbitals: 5f < 6d in U(VI) and 6d < 5f in Th(IV). Interaction of 6d orbitals is found
responsible for bent ThO, structure.
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Pyykkd & Lohr (1981) investigate the effect of a relativistic calculation on MO orbital
energies by a reativistic parametrized extended Huckel (REX) method. REX results are
compared to (Walch & Ellis 1976); a close agreement is observed. U-6p orbital participation in
bonding is negligible. Their influence is indirect: they shift the s, combination of O-2p atomic
orbitals to higher energies. The uranyl HOMO becomes essentially 5f MO (86.7% 5f).

Jorgensen (1982) comments a length the discussion of UQO,*" electronic structure
calculations. The considerable 5f contribution to the HOMO (Pyykkd & Lohr 1981) results in
a low energy transition of mainly f character - in contrast to previous interpretations
(Rabinovitch & Belford 1964, Burrows & Kemp 1974) seeing this transition as an electron
transfer transition. The consequences of a s ,-HOMO (Denning et al. 1976, Denning et al.
1979a,b) instead of a p,- HOMO (Jargensen 1979) are discussed. Influence of U-6p orbitals
on the energy level of s, valence orbitals is emphasized. The considerable discrepancies in
available electronic structure calculations are pointed out.

Gorrler-Walrand et al. (1982) interpret absorption and MCD spectra of Cs;UO,Fs crystals
a 4 K. Transtion moments in Ds, crystal field symmetry are discussed. At least eight
electronic trangitions are identified. A correlation with electronic levels is proposed. A close
agreement with results of (Denning et al. 1979a,b) is observed.

DeKock et al. (1984) calculate the electronic structure of UO,™ by rdativistic LCAO-MO
Hartree-Fock-Slater method. It is shown that influence of (non-relativistic) U-6p and O-2s
hybridization alone is not sufficient to give rise to a s ,-HOMO. Relativistic destabilization of
5f contribution (71% U-5f) in's, resultsin as, (S1U in relativistic treatment) HOMO. A good
agreement in experimental and calculated HOMO-LUMO energy difference is obtained.
Influence of tetraedric equatorial coordination is studied for UO,F,*. Ligand orbital participa-
tionin HOMO (65 % F-2p) is found considerable.

Larsson & Pyykko (1986) compare results obtained by various calculation methods. Far-
reaching agreement is reported on UO,”* linearity, character of HOMO and LUMO as well as
axial U-O bond length. Influence of equatoria ligands reduces LUMO ungerade character and
resultsin an increase of transition moments.

Barker et a. (1987) present investigations of Cs,UO,Cl, by two photon absorption
spectroscopy together with theoretical analysis. A satisfactory agreement of calculated and
experimentally derived electronic states is shown. Critical comparison with the work of
(Pyykkd & Lohr 1981, DeKock et al. 1984) is given. Importance of ligand influence on
character of MO proposed by (DeKock et a. 1984) isfound untenable.

Ryzhkov & Gubanov (1990) investigate bonding in solids g-UO,, Cs,UO,Cl, and UO,F,
and solution species UO,(NO3), 2 H,O by DV-(discrete variational) Dirac-Slater and Hartree-
Fock approximations. Influence of relativistic effects is investigated by comparison with non-
relativistic treatment. Relativistic treatment results in a wider HOMO LUMO gap. In case of
nitrato complex non-relativistic calculation indicates a mixture of 5f orbitals and O-2p orbitals
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and consequently a mixture of HOMO and LUMO while relativistic treatment calculates an
energy gap of about 1.2 eV.

Krupaet al. (1994) discuss interactions between equatorial ligands and the uranyl (V1) group
in UO,CI, for absorption and emission spectra at 77 °C. Evidence for 6d participation in
excited states is forwarded. The Laporte rule affects s,-ground state transitions to these states
to alesser extent; thus these transitions are more probable.

Cornehl, Heinemann, Marcalo, Pires de Matos & Schwarz (1996) apply coupled cluster
method (CCSD) to validate experimental thermodynamic data of ‘bare’ uranyl(V1) ion UO,™.
A Hartree-Fock frontier orbital scheme is shown in Fig. 2.1. Orbitals 1d, and 1f , are non-

bonding orbitals localized at the uranium atom. The
other orbitals are bonding combinations of U-7s, U-

| 6d and U-5f
0,644 aswell as O-2s and O-2p atomic orbitals.
19,
0,642 1 p— —_—
LSBT
E 0,640i
~ 1 2.2 Summary
QL 0638~
g 30,
TR 27; U Electronic structure of UO,*" entity _is curr_ently
| 30, understood by occupied molecular orbitals with a
0027 S,-HOMO. Character of this s,-HOMO is mostly
woe T A - O-2p. LUMO orhital is formed by an empty 5f;
1 orbital. The characteristic low-lying electronic

transition takes place from ground state s,-MO to
non-bonding f orbitals. Trangition therefore is
ungerade-ungerade and Laporte-forbidden. This
transition is characterized by a manifold of
electronic states resulting from interaction of an
occupied 5f orbital and an energy gap in the
ground state structure. The field of axial oxygens
determine properties of the uranyl group. Effect of equatorial ligands is secondary and
influences electronic transitions by reducing the ungerade character of s -orbitals with
subsequent increase of oscillator strength in non-centric coordinations (Gorller-Walrand &
Vanquickenborne 1972). The unusual strength of the UO,”" entity results from its triple bond
character (Denning et al. 1979b).

Fig. 2.1 : Hartree-Fock frontier orbital
scheme of 'Sy" ground state of
uncoordinated UO,*" ion (Cornehl et
al. 1996).
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3. Spectroscopic Properties
3.1 UV-Vis Absor ption Spectroscopy

The UV-Vis absorption spectrum of the free uranyl ion is given in fig. 3.1 in the range 500
nm to 220 nm. The spectrum shows a weak absorption band in the range 480 nm and 330 nm
with a characteristic fine structure as well as a nearly continuous spectrum beyond 330 nm
without characteristic features. Above 480 nm no further absorption band was observed and
the characteristic weak absorption band is associated with the lowest lying electronic
transition. Considerable attention was concentrated on this part of the uranyl(VI) spectrum
(Dieke & Duncan 1949, Rabinowitch & Belford 1964).

The characterigtic fine structure of the low energy absorption spectrum consists from a
nearly regular sequence of bands (Dieke & Duncan 1949), resulting from coupling of
electronic transitions with symmetric stretching vibration of the uranyl(V1) group (Jones 1958,
DeJagere & Gorrler-Walrand 1969). This part of the UV-Vis spectrum is shown in Fig. 3.2.

The absorption maximum is found at
Wellenzahlen / [1/cm] 4138 nm and a molar extinction
40000 30000 20000 coefficient of 9.7 + 0.2 mol™ cm™

(~]

Intensity of electronic trangitions is
usualy compared on basis of the oscil-
lator strength. The oscillator strength f is
a dimensionless figure proportional to the
area under the absorption band. The
absorption spectrum of the uranyl(V1) ion
exhibits an unusually weak oscillator
strength (Jorgensen & Reisfeld 1982).
\‘ From figure 3.2 an oscillator strength | »

N
|

(=

10* in the range 330 nm to 580 nm is
caculated. The oscillator strength
220 2éo 2£|;5 3:1.0 460 500 thergfgre s of th_e order of - 4f-f
Wellentinge / [nm] trangition of lanthanides (Carn_all 1979)

and about one order of magnitude less

than typical oscillator strengths found for

Fig. 3.1 : UV-Vis spectrum of free uranyl(VIl) 5f-5f transitions of actinides (Carndl &
ions in the range 500 nm to 220 nm (McGlynn & Rajnak 1975). Oscillator strengths of
Smith 1961a). allowed transitions are of typical order 10
! - 10°, Laporte-forbidden spin allowed

transitions have typicaly f = 10° - 10 and for spin forbidden transitions f is in the range 10™
- 10® (Sykora & Sima 1990). The oscillator strength of the free uranyl ion therefore
corresponds to oscillator strengths of both spin forbidden as well as Laporte forbidden
electronic transitions (cf. Table 3.1). This low oscillator strength in the order of f-f transitions

molare Extinktion (log (mol / |1 cm])]
L

-1
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is unusual for a molecular that formally does not have f electrons at al. In the oxidation state
+V| the electron configuration of uraniumis[Rn] 78’ 6d° 5f° (cf. section 1.2).

L
2+ _ -3 -1
[UOZ(aq)]—3.07x10 M | i
0,04 0.1 M NaClo, |
25°C
c
o 413nm spekirale Bandbreite : 1 nm
)
5
< 002- .
485 nm
0,00 — )

e e
350 400 450 500 550

Wellenlénge/ [nm]

Abb. 3.2: UV-Vis spectrum of free uranyl ionin 0.1 N NaClO,

©
=]
|

N
=
|

10

molare Absorption /[ | mol! cm"]

o

I I |
350 380 400 450 500
Wellenldnge / [nm]

Fig. 3.3 : Typica UV-Vis spectrum of coordination geometry Dy, (GOorller-Walrand & de
Jagere (19724)). solid : solution species [UO,(NO5)4]". dashed : NaUO,(CH3;COO); at 77 K

In literature, close agreement in the spectra of a uranium(V1) coordination in solids at low
temperatures and the same coordination in solutions has been pointed out (Volod ko et a.
1967, Gorller-Walrand et a. 1972ab, 1973). Intensity and position of electronic transitions
seems to be mainly governed from the geometry of equatorial coordination and only to a lesser
extend by the chemical nature of the ligands. Each coordination geometry is reported to exhibit
a characteristic spectrum while the chemical nature of the ligand is of minor influence.
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Coordination geometries lacking a center of inversion, e.g. in case of hexagonally coordinated
solution species UO,(NO3);” and NaUO,(CH3;COO)5 solid (both symmetry Dy (fig. 3.3)

result in an increase in the molar absorption compared to geometries with center of inversion.
Those compounds have molar absorptions typicaly of. 10 | mol™ cm™.

Table 3.1 . Oscillator strengths f of spin- and Laporte forbidden electronic transitions in
actinide-, lanthanide- and transition metal complexes

metal ion ! transition e[lmo*cm™]  wavelength Ref.
uo,” 1.7°10*  Laporte forbidden 9.7 413.8nm  Meinrath 1998c
Am’* 410"  Laporte forbidden 410 503.2nm  Meinrath 1991
cm* 510°  Laporte forbidden 55.3 396.0 nm Carnall &
Rajnak 1975
Tb** 7.5°10°  Laporte forbidden 0.3 350 nm Carnall 1976
Co(NH2)¢™  4'10° spin forbidden 0.23 770nm  Jorgensen 1963
" 910" Laporte forbidden 56 472 nm Jorgensen 1963
LMCT 0.8 allowed 20 000 Sykora & Sima
1990

LMCT : ligand to metal charge transfer

Solution species and solids with pentagonal symmetry Dgy,, €.0. U02F53'(aq) and
K3UO,Fs ), exhibit characteristic spectra similar to those of U022+(aq). Molar absorptions of
this non-centric coordination is not increased and correspond to molar absorptions of centric
symmetries D, and D, With €y, about 10 | mol™ cmi™.

3.2 Emission Spectroscopy

The uranyl ion is luminescent in solutions at room temperature as well as in a great number
of solid phases. This luminescence property has caused major attraction devoted to uranium
salts and solutions about the turn of the last century. Results of this interest are e.g. discovery
of Stokes shift 1852/53 (Stokes 1852, Stokes 1853) and discovery of radioactivity by
Becquerel in 1896. Spectroscopic investigations during the *Manhattan’ project were directed
primarily to photochemical methods of isotopic enrichment. The huge amount of spectroscopic
material collected during ‘Manhattan Project’ is summarized in two monographs (Dieke &
Duncan 1949, Rabinovitch & Belford 1964).
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3.2.1 Emission Spectrum

Due to the luminescence emitted by the uranyl(VI) ion by its electronic decay from an
electronically excited state, the uranyl ion was considered a ‘model case of inorganic
photochemistry’ (Balzani et al. 1978). Current understanding of the electronic structure of
uranyl (V1) indicates that the luminescence is fluorescence, not phosphorescence.

Absorption 509 Emission

P
KT

Absorption i [rel. Einheiten]
[uapayunz 'ja4] § 23ediyez

Wellenlinge / [nm]

Fig. 3.4 : Emission spectrum (solid) and absorption spectrum (dashed) of free uranyl ionin 0.1
M HCIO, at 25 °C. Wavelengths given in nm. (Fluorescence spectrum of (Kato et a. 1994)).

The emission spectrum of free uranyl(VI) ion in 0.1M NaClO, at 25 °C is given together
with its absorption spectrum in fig. 3.4. Absorption and emission spectrum exhibit common
bands at 488 nm (emission) / 485 nm (absorption) and 473 nm (emission) / 467 nm
(absorption). The absorption band at 488 nm corresponds to the low energy transition to the
lowest lying vibronic state of the first excited electronic state, while the emission band at 473
nm corresponds to a transition from an excited vibronic level of the fluorescent state to the
electronic ground state (“ hot band’)

3.22LifeTime

The life time of excited uranyl(VI) ion in aqueous solution depends on a series of factors.
These factors are e.g. temperature, medium, presence of ligands and quenchers (Benson et al.
1975, Burrows & Kemp 1974). Some data on the life time of the uranyl(VI) fluorescence
under various conditions are summarized in tables 3.2 and 3.3. Data in tables 3.2 and 3.3
strikingly illustrate dependence of fluorescence life time from surrounding conditions like
temperature and medium. This dependency of fluorescence life time from its electronic
environment offers the possibility to use uranyl(VI) as a sensor for processes in solution. This
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application in turn requires detailed understanding of influences determining the emission

process of uranyl(V1) ion and itsli

fetime.

Table 3.2 : life time of uranyl(V1) fluorescence in solution under various conditions

lifetime [pg]

1.24

2.38

0.98

3

25

5.5

121
19+0.2
21
81+0.6
6.8
1.7+01
11.7
127+ 0.8
10.8

10+ 4
232.1+05
187

conditions

0.02 M NaClO,, H,0
0.02 M NaClO,, D,O
0.02 M UO,(NO,),, RT.
D,0

0.2 M NaClO,, 20 °C, pH 2
0.2 M NaClO,, 5 °C, pH 2
0.1 M UO,(NO,),, pH 1.9
0.1 M HCIO,, RT.

0.1 M HCIO,

1.0 M HCIO,, RT.

1.0M HCIO,

3.0 M NaClo,

1.0M H,S0,, 22°C

1.0 M H,SO,, RT.

1.0M H,S0O,

0.67 H3PO,, 28+ 1°C
1.0 M H4PO,, RT.

1.0 M H4PO,

reference

Hill 1974
Hill 1974
Burrows 1990
Kropp 1967
Zheng et a. 1986
Zheng et a. 1986
Burrows 1990
Meinrath et a. 1993
Moriyasu et al. 1977
Meinrath et a. 1993
Moriyasu et al. 1977
Park et al. 1990
Y okoyama et al. 1973
Meinrath et a. 1993
Moriyasu et al. 1977
Matsushimaet a. 1974
Meinrath et a. 1993
Y okoyama et al.1975

RT. : room temperature

Table 3.3 : temperature dependence of fluorescence life time of uranyl(VI) in agueous solution

of 0.02 M UO,(NO3), at pH 3 (Formosinho & Miguel 1984)

temperature [°C] lifetimein [ps]
9 25
12 2.3
15 2.0
20 1.6
26 11
36 0.8
50 0.6
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3.2.3 Photochemistry; Quenching by Water and Carbonate

Uranyl (V1) has arather varied photochemistry. Excited uranyl(V1) is both a good oxidizing
and reducing species. Redox reactions in solution take a large share in the photochemistry of
U(VI) (Balzani et a. 1978). Taking the standard potential E, of reaction

U0, <===>U0," +€ : E,=0.19V (3.1)

and the low lying excited state at about 2.54 eV (20 600 cm™) results in a reduction potential
of excited uranyl of about 2.7 V, an oxidation power comparable to F,. Comparison of
collision rates e.g. with solvent molecules of typically 10" s* (Porter 1983) and life times of
excited uranyl ions in table 3.2 indicates that e.g. many organic substances can react
photochemically with excited uranyl(V1). Examples are oxidation of methanol (Ledwith et al.
1973), diphatic acohols (Matsushima 1972, Azenha et a. 1989) and benzaldehyde
(Matsushima et al. 1972). Formation of dihalide radicals X, (X=Cl, Br, I, SCN) was reported
in solutions of the ions CI', Br,, I and SCN" (Yokoyama et a. 1974, Burrows & Pedrosa de
Jesus 1976, Moriyasu et al. 1977, Burrows 1990). Photochemistry of uranyl(V1) has been
summarized in more detail by (Greatorex et a. 1972, Balzani et al. 1978, Jargensen & Reisfeld
1982, Gusten 1983).

In the framework of present study, two reactions of excited uranyl(VI) are of prominent
interest. These reactions are first the reaction with the water molecule itself, second the
reaction with CO, and its dissociation products HCO;3 and CO5”.

3.2.3.1 Quenching by Water

The life time of uranyl(VI) fluorescence shows an isotopic effect as consequence of a
solvent change from H,O to D,0 by afactor of 2 (cf. table 3.2) (Hill et a. 1974). Radiationless
relaxation of excited trivalent lanthanide ions however have a much stronger isotopic effect
(Haas & Stein 1972), in case of e.g. EU** by afactor of 54. This effect has been explained in
case of the lanthanides photophysically by resonance of solvent vibronic levels that are higher
in case of D,O compared to H,O and hence less effective quenchers. To interpret the compara
tively weak isotopic effect of uranyl(V1), chemical quenching is usually assumed instead of a
photophysical effect (Benson et al. 1975).

Abstraction of hydrogen from water molecules is considered as quenching reaction of
excited uranyl(V1) in water. This reaction is interpreted by different mechanisms (Moriyasu et
al. 1977, Marcantonatos 1977, Marcantonatos 1980, Formosinho et al. 1984). As evidence for
the hydrogen abstraction reaction, two effects are usually given: the above mentioned small
isotopic effect of deuterated water on fluorescence life time (cf. table 3.2), and the variation in
fluorescence decay time constants as function of pH. While emission of uranyl(V1) ion at low
pH (ca. < pH 2) is monoexponential, decay becomes biexponential after raising pH to about 3.
Occurrence of biexponential decay however could not yet be predicted and the understanding
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of fluorescence behaviour as function of pH thus has been hampered considerable. The pH
dependence is explained in literature by different mutually exclusve mechanisms taking
hydrogen abstraction as a reaction of central importance.

Moriyasu, Yokoyama & lkeda (1977) suggest that abstraction of hydrogen by an excited
uranyl ion from H3O" is dower than from H,O and hence explains both the pH dependence of
fluorescence life times and observation of biexponential decay curves.

Marcantonatos (1980) discusses hydrogen abstraction by excited uranyl(V1) *UO,™
according to

*U0,” + HyO <===> H*UO,” + OH’ (32
H*UO,™ + UO,™ <===> H*(UO,),"" (3.3)

by formation of a fourfold positively charged coordination compound formed by a uranyl(V1)
ion in excited state with a ground state uranyl (exciplex).

Formosinho, Da Graga & Burrows (1984) explain biexponential decay by reversible
intersystem crossing between two states of excited uranyl. The reaction kinetics in both cases
are found with high energy of activation. Hence, hydrogen abstraction is assumed to play an
important role in the mechanism.

3.2.3.2 Quenching by Carbonate

The carbonate radical CO;~ exhibits a broad absorption band between 500 nm and 700 nm
with a maximum at 600 nm (e = 1860 | mol™ cm™) (Behar et al. 1970). It is formed according
to

CO,> + HO® > CO, - + OH’ (3.4)

(Netaet a. 1988).

Flash light photolysis of 2°10° molar U(V1) solution containing 10° M NaHCO; resulted
in a broad band centred at about 580 nm. The band is interpreted as evidence for formation of
COy° " radicals (Burrows & Kemp 1974) according to

UO,”* + HCOg + hn ------ >UO," + CO;- + H". (3.4)
This observation indicates that carbonate is a possible quencher of uranyl(VI) fluorescence.
For reduction potentials of the couple CO, / CO, ", standard potentials between -2.0 V and

-1.9V are given (Wardman 1989). Quenching by CO, therefore is possible, however has not
been reported yet. No data are available in literature for the redox couple CO3* / CO;” .
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U(V) is not stable in water and disproportionates according to
2 UOZJr +4H <===> U022+ +U+2 H,O E,=0.19V. (3.5)

Reaction 3.5 is a dow process involving breaking of covalent bonds. Therefore kinetics is
dow. Oxidation of UO," by photochemically produced radicals OH° and CO5* therefore is
possible and may explain that neither in water nor in carbonate containing solutions formation
of U(1V) has been observed after irradiation with light.

Quenching by oxygen has not been observed (Benson et a. 1975, Allen et al. 1978, Gusten
1983) despite the fact that the standard potentia of reduction for the couple O, / O, is only
about -0.33 V. Concentration of oxygen in agueous solution is probably to low.

3.2.4 Summary

Fluorescence life time of the excited uranyl(V1) ion depends on a series of influences, e.g.
temperature, medium, ligand concentration and presence of quenching substances. These
influences are partly difficult to control. The complicated relationship of influencing parameters
has lead to several mutually exclusive interpretations of uranyl(VI) aqueous solution
behaviour. (Formosinho & Da Graga 1984, Park 1990). Comparability of results from different
sources therefore is limited. It has to be kept in mind that interpretation of fluorescence
behaviour is related to understanding of the electronic structure of uranyl(VI). This discussion,
too has been rather controversial.

Discrepant informations concerning composition of hydrolyzed uranyl(VI) solutions
introduce further uncertainty in interpretation of pH dependence of uranyl(V1) fluorescence. A
major number especially of the earlier and influential contributions are based on interpretation
of pH dependence of fluorescence behaviour (Benson et a. 1975, Marcantonatos 1978, Des-
chaux & Marcantonatos 1979, Marcantonatos 1980, Formosinho et a. 1984, Da Graca et al.
1984). Spectroscopic properties, e.g. relation of absorption spectra and coordination
geometry, have either not yet been available or have been ignored. Consequently many results
reported on this subject are discrepant. These discrepancies can be appreciated by comparing
reported quenching constants of metal ions (Yokoyama et a. 1974, Matsushima et al. 1974,
Burrows & Kemp 1974) that scatter for several orders of magnitude (Balzani et a. 1978).

There is univocal evidence that uranyl(V1) in diluted perchlorate medium has a fluorescence

life time of about 1 - 2 pys. Temperature, pH value, concentration of potential quenchers and
ligands are understood as important influencing factors.
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4. Hydrolytic Behaviour of Uranium(VI)

The hydrolytic behaviour of uranium(V1) has intensively been studied since about 1940.
This interest is mainly motivated by the importance of uranium in nuclear technologies.
Prospection, mining, processing, nuclear fuel production, reprocessing and disposal of nuclear
wastes needs a detailed understanding of uranium(V1) in agueous solutions. In case of hexa-
valent actinides, onset of hydrolysis is observed already at pH 4. In concentrated solutions
above 10° M U(VI) , where uranium(V1) forms oligomeric hydrolysis species, hydrolysis is
observed even at pH 3. For the formally pentavalent actinyl ions, e.g. Np(V), onset of
hydrolysisis observed only at pH > 9, for the trivalent actinides, e.g. Am(l1l), at pH > 6.

But relative importance of hydrolysis for an understanding and prediction of its aqueous
solution behaviour in technical applications only in part explains the large number of studies
directed to hydrolysis of hexavalent uranyl. An additiona factor are the oligomeric species
formed by uranyl(VI) at elevated concentrations. As will be outlined in the sequel and focused
on in the central part of this report, the precise number and composition of oligomeric species
actually formed is not yet clear. Furthermore, uranyl(VI) displays fascinating spectroscopic
properties, e.g. fluorescence emission. This fluorescence has directed attention to uranium
since 1843 when Brewster discovered this property. A further factor is the rather unusual
stable hexavalent form of a linear O-U-O unit with surprising kinetic and thermodynamic
stability. Similar properties are only to be found with the artificial elements NpO.**, PuO,*" and
AmO,**. About 5% of all known minerals involve uranium, the vast majority are formed by
hexavaent uranium. But for only half a dozen mineras, experimental thermodynamic data has
been reported.

To illustrate current discrepancies within our knowledge of uranium(VI) hydrolyss, the
recommended data from two recent reviews are given in table. 4.1. It is obvious that both
reviews give widely different appraisal, however based on about the same literature data
Discrepancy is not only on certain formation constants but even on the very existence of
certain species. It is evident that current situation demands for further investigations.

However it is aso evident that mere repetition of studies aready available in literature is
most probably not very helpful. As a matter of fact, more than 30 studies out of a total of 41
studies reported in the open literature have been done by the same method, that is by
potentiometric titration. Other methods applied are solvent extraction, spectroscopic methods
or solubility studies.

A critical analysis of U(VI) hydrolysis has to give conclusive answer to the selection of
parameters in interpreting the experimental data in terms of statistical evaluation. Furthermore,
critical assessment of the results in terms of its capability to predict solution behaviour is
necessary.
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Table 4.1: Comparison of recommended hydrolysis species,
constants and comments given in (IAEA 1992) and (NEA 1992).

their respective formation

species |AEA (1992) NEA (1992)
Ig K° / comment lgK®
(UO,)2(OH),** - 554+ 0.04 -5.62 + 0.04
(UO2)5(OH)s" -15.44 + 0.10 -15.55+ 0.12
UO,OH" -5.76 + 0.10 -52+0.3
UO,OH,° -13.00+ 0.25 <-10.3
(UO,),0H** -4.06 + 0.15 -27+1.0
(UOy)3(OH)* species not firmly established -11.9+0.3
(UO,)4(OH)" species not firmly established -21.9+ 1.0
UO,(OH)3 existence in doubt -19.2+04
(UO,)3(OH)7 31+ 2
UO,(OH)4* only one data/erroneous 332

interpretation

It has to be stated explicitly that before the investigations described in the following have
been started, no method to assess composition of hydrolysed U(V1) solutions by experimental
methods has been advised. The only possibility to assess composition of hydrolysed U(VI)
solutions currently available is by calculation based on formation constants summarized in table
4.1. However it is obvious that the discrepancies within the datais by far too large to expect at
least some reliability. even for solutions at elevated concentrations above 10* M U(V1).

Even if a decision is made for one of the both data sets, conclusive results may not be
expected. The IAEA data set does not alow correction of ionic strength. For NEA data set,
methods for ionic strength correction in terms of Specific Interaction Theory (Scatchard 1936)
are recommended. In fig. 4.1ab, caculation results for species composition of hydrolyzed
U(VI) solutions is given. The caculations are based on data and methods recommended by
NEA review data (NEA 1992). The conditions selected are amost simple: aqueous perchlorate
solutions at an ionic content p=0.1 M, pH 3.93 (fig. 4.1a) and pH 4.51 (fig. 4.1b), resp. with
total uranium concentrations of 4.84 10° M (fig. 4.1a) and 5.79° 10 M (fig. 4.1b). Included
into fig. 4.1a,b are the 95% confidence limits obtained from NEA data

It is evident from fig. 4.1 that no concluson can be drawn on the likely solution
composition from prediction by recommended data. Within 95% confidence limit a species can
either be completely absent or a prevailing solution species. This fact is most stikingly
illustrated for the (UO,),OH*" species. It is straight forward to expect even wider margins if
additional species, e.g. sulfato species, were included.
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Figs. 4.1ab : Bar diagrams giving percentual amounts of species in two representative
hydrolyzed U(VI) solutions at different pH and total uranium concentration. The composition
is predicted by data and methods from (NEA 1992). Mean values are given by grey bars. Black
bars representing minimum (front) and maximum (back) species amount predicted within the
95% confidence limit of the recommended data.

The need for a direct method to assess solution composition of hydrolyzed U(VI) solutions
is strongly underlined by figs. 4.1ab. The search for such a method will be focused on in the
following. This method will be based on UV-Vis spectroscopic investigations of U(VI). As
outlined in the preceding chapters, the spectroscopic properties of U(VI) offer a wide field of
unresolved questions. Therefore, the evaluation of single component spectra of well defined
solution species is of considerable interest to contribute to fundamental aspects of U(VI)
spectroscopy .

Detailed analysis of literature data however leads to the conclusion that the study must be
accompanied by careful statistical trestment of experimenta evidence. The magjor means of this
statistical treatment will be non-parametric statistics (Bates & Watts 1988, Lord 1945),
resampling agorithms like Jackknife and Bootstrap (Efron 1981, Efron & Gong 1983),
chemometrics (Malinowski 1991, Otto 1997) and statistical tests like Dixon’'s Q test (Dixon
1950, Rorabacher 1991). These methods will be briefly introduced together with their
application. The reader is however advised to check with the original literature.
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4.1 UV-Vis Absor ption Spectroscopy of Hydrolysed U(VI) Solutions

A total of 26 UV-Vis absorption spectra of hydrolyzed U(VI) solutions are collected in 0.2
nm steps using quartz cuvettes with pathlength of 1 cm. Signal-to-noise ratio of these spectra
is improved by averaging multiple scans. The location of these solutions in the pH-lg (U(V1)]

diagram is shown in fig. 4.2.

lg [U(VI)]

Fig. 4.2 : Uranium(VI) concentrations and pH of 26
samples.

To illustrate the experimental observations, eleven
of totaly 26 spectra are shown in fig. 4.3. The
differences in symbols and colours of figs. 4.2 and
4.3 dready take into account results of the sub-
sequent data analysis and are of no significance at
present.

Fig. 4.3 further illustrates the need for careful
statistical treatment since the spectra are rather weak
and do not show amajor peak shift that would allow

Since the solution behaviour of U(VI)
is interpreted by the assumption that
only solution species affect the
observed behaviour, occurrence of pre-
cipitation effects had to be avoided
carefully. Therefore, solubility limits
under given conditions have been
studied intensively (Meinrath et. al.
1993, Meinrath & Kimura 19933,
Meinrath & Kimura 1993b, Meinrath et
a. 1996). The sability limit of the
respective solid phase UO; * 2 H,O is
given in fig. 4.2 by the yellow area. As
can be seen from fig. 4.2, solutions are
undersaturated  with  respect to
schoepite UO; " 2 H,0.
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Fig. 4.3 . Selected experimental UV-
Vis spectra of hydrolysed U(VI)
solutions in the pH range 2.9 to 4.8.

separation of individual species contributions on basis of features characteristic for a certain
species. Hence the techniques chosen to approach this problem are advanced chemometric
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techniques. These chemometric techniques, especialy the various methods of factor anaysis,
offer a series of advantages that are most favourable in given context:

a) Factor analysisis amode free technique. Thus no a priori assumptions are necessary to
analyse a given system.

b) Factor analysis implicitly takes into account the statistical nature of experimental data.
Suitable statistical procedures to cope with this nature are available.

¢) Theresults of data analysis and decisions made on basis of the numerical analysis are
expressed in figures. Therefore, personal bias can be avoided.

d) Factor analysis treats multiple observations simultaneously. Simultaneous treatment
uncovers inconsistency in both data and data analysis that might go unnoticed during a case-
to-case spectral deconvolution.

4.2 Factor Analysis

A suitable definition of factor analysisis given by Mainowski (1991) : , Factor anaysisis a
multivariate technique for reducing matrices of data to their lowest dimensionality by use of
orthogonal factor space that yield predictions and/or recognizable factors and anayzes
simultaneously multiple observations®.

FA is applicable to data formed by sums of product functions X = Sy;; zj. Such data can

be expressed by matrix formulation as X =Y Z and submitted to far-reaching data analysis and

modelling. In the following, UV-Vis spectra are analyzed. An experimentally observed absor-
bance &, at the wavelength i in solution k is, within the validity range of Beer's Law, a sum of

the products of molar absorption &; of n species with its concentration ¢ in the k-th sample
according to eg. 4.1:

Ak =61 Cix T G2 Cx + ... + € O (4.1)

The matrix A of absorbances g, measured at a range of wavelengths i in several solutions k

of the same chemica system under varying conditions can be expressed by matrix formulation
as A = E C, where E is a column matrix of the molar absorbances e of each species at the
measured wavelengths and C a row matrix of the concentration ¢ of each species in the
individual solutions. Evaluation of the matrix E is of great interest, because the columns of E
contain the single component spectra of the relevant species.
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Factor analysis aims first at the determination of number n of factors contributing
significantly to the absorbance matrix A by application of abstract factor analysis (AFA),
yielding abstract factor matrix E' and C'. The abstract factor matrix E' is composed of the
column eigenvectors of A, while C' is composed of the row eigenvectors of A. Second, the
abstract factor matrices are analyzed by target rotation (Rozett & McLaughlin Petersen 1975,
Malinowski 1991, Hopke 1989, Otto 1997) to yield physically interpretable matrices E
composed of n columns of single component spectra of U(VI) hydrolysis species and C
composed of n rows of species concentrations in each solutions. Third, both spectra and
species concentrations are interpreted in terms of a chemical model and analyzed statistically to
yield an estimate on the quality of the complete analysis. Finally, the resulting single
component spectra are validated by peak deconvolution of mixed species spectra.

The complete procedure is given in the flow sheet fig. 4.4.

data

data matrix

eigen values
eigen vectors

tanget
testing iteration

real identification cluster
factors of factors analysis

Fig. 4.4 . Conceptual flow sheet of factor analysis procedure

The data matrix A is constructed from 181 UV-Vis absorption data from an experimental
spectrum in 1 nm steps in the range 340 nm to 520 nm thus including the steep absorption edge
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towards the UV region. The spectral data was arranged in 26 columns, each column holding
spectral data of one of the 26 spectra. This experimental data matrix was submitted to AFA.

As shown in the conceptua flow sheet fig. 4.4, the first step of AFA decomposes the
experimental data matrix into its eigenvectors and eigenvalues. There are severa equivaent
techniques to perform this task, e.g. Jacobi rotation (Schonhage 1961), non-linear iterative
least sguares agorithm (Wold 1966) and Singular Value Decomposition (Golub & Reinsch
1970). By these techniques, observed variances are interpreted by a set of mutually orthogonal
vectors (the eigenvectors of matrix A), where each vector is chosen to extract successively as
much of the data variance as possible. In this work, SVD algorithm is used for determination
of eigenvectors and their eigenvalues| . A real data matrix Ay, of r rows and ¢ columnswith r
8 ¢, isdecomposed according to Eq. 3:

Arc=Urc See Ve (4.2)

into a unitary matrix U of the column eigenvectors of A, a unitary transposed matrix V of the
row eigenvectors of X and a diagonal matrix S, composed of the roots of the eigenvalues of A
and elements §j = 0 (it j). SVD extracts the roots of eigenvectors in decreasing relevance.
The associated diagonal values sj with si2 = | j (I = i-th eigenvalue) are ordered with
decreasing magnitude. It is straightforward to identify

Urc Sec = E* (4.3)
Ve = CH (4.4)

Data matrices E¥ and C¥ contain the requested information, however in an mathematical
abstract form and associated with random error and bias.

If experimental data could be obtained unaffected by random errors and bias, AFA would
result in a limited number of non-zero eigenvalues in Sge corresponding to the dimensionality
of the data matrix, that is the number of factors contributing to the experimental data under
investigation. However, experimental data can hardly be obtained without random errors and
bias. Therefore, al eigenvalues | j are non-zero, abeit usually quickly approaching very small
values with increasing i. Decision on the dimensionality of the data space therefore has to be
based on statistical tests. Only the n largest eigenvalues | and the associated column and row
eigenvectors are contributing significantly to the experimental variance. The remaining c-n
eigenvaues | ° and the associated eigenvectors form the so-called null space or error space
(indicated by (°)) and are excluded from the further analysis. Forming matrices E' and C' from
the first n row and column eigenvectors only allows calculation of a matrix A', where random
errors and bias are reduced by omitting summation over the null-space (Hopke 1989). There-
fore, A' differs from A by the amount of removed random error and bias. The eigenvalues can
be understood as a measure of the residual variance not explained by the abstract factors.
Therefore, the magnitude of eigenvalues with respect to the unavoidable noise in the data
offers access for statistical analysis. Here, severa techniques are available.
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4.3 Abstract Factor Analysis

The result of abstract factor analysis (AFA) are summarized in Table 4.2 for the first 6 of 26
eigenvalues obtained from application of SVD to the experimental data matrix A.

Table 4.2 : Results of AFA for thefirst 6 of 26 eigenvalues of data matrix A

uncertainty in RE c2 c2 expectation
eigenvalue (3s) values
1.3468468 0.001023 9.173-10° 43599 676
0.0192484 0.000699 8.132- 10" 2187.3 625
0.001105 0.000675 3.105 - 10™* 1456.1 576
0.0000981 0.000645 2.013- 10" 308.1 529
0.0000033 0.000299 1.136 - 10* 131.9 484
0.0000008 0.000735 8.083- 10° 311 441

Table 4.2 gives the eigenvalues in the first column. It is shown that the eigenvaues rapidly
decrease in magnitude. The remaining 20 eigenvalues are even of lower magnitude and are
therefore omitted from table 4.2. Included into table 4.2 are the results of three statistical test
commonly applied. These tests need an estimate on the average noise in the data. This estimate
has been obtained in the present study from an analysis of base line noise and from previous
analysis of carbonate complexation of uranium(VI) by UV-Vis spectroscopy (Meinrath 1997b)
and set to s = 3°10* cm™. However, there is an independent method for assessing an estimate
of data noise, the so-called SCREE test (Cattell 1966). This test will be introduced below and
shown to corroborate the conclusions from baseline analysis and spectral deconvolutions.

The second column gives uncertainty in eigenvalue (Hugus & El-Awady 1971). The
uncertainty in eigenvalue is estimated from an analysis of error propagation in eigenvalue
analysis. Calculation is based on the correlation matrix D = A AT, where AT is the transposed A
matrix. Thus, by comparison of the eigenvalues with their uncertainty, the number of
significant eigenvalues and therefore the rank of matrix A is the borderline where the
uncertainty gets larger than its eigenvalue. This borderline is n>3 in table 4.2. This criterion
therefore advocates three significant eigenvalues and therefore three speciesin solution.
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From Theory of Error (Mainowski 1977) figures of merit summarized in table 4.3 can be
derived for the root mean square error (or 'rea error' in the data matrix) RE, the imbedded
error 1E and the error XE extracted from the original data matrix X due to omission of the
error eigenvectors. These types of error can be calculated from the error eigenvalues | °, the
rows r and columns c of the respective data matrix A and the number n of significant
eigenvalues as obtained from AFA according to Egs. 4.5 -4.7:

C

N

A (4.5)
- rc(c- n)
g0
XE = | (4.6)
Ic
g1 |’
RE=|=n (4.7)
r(c-n)

Table 4.3 : Root mean square error RE, imbedded error IE and extracted error XE as a
function of the number n of relevant factors for the first eight factors of matrix A

number n of factors RE IE XE
1 9.173-10°3 2.452 - 10-3 8.839 - 10-3
2 8.132- 104 3.074 - 104 7.529 - 104
3 3.105- 104 1.437 - 104 2.752 - 104
4 2.013- 104 1.076 - 104 1.702 - 104
5 1.136 - 104 6.789 - 102 9.109 - 10-°
6 8.083- 107 5.292 - 1070 6.110 - 10
7 7.171- 102 5.071- 10 5.071- 10
8 6.279 - 102 4.746 - 1070 4.110- 10

The root mean square error RE is a measure of the difference between pure data, unaffected
by random errors and bias, and the raw experimental data. The imbedded error |E is a measure
of the mean square error between the pure, error- and bias-free data and the data reproduced
by matrix multiplication of E' and C'. Finally, extracted error XE is a measure for the diffe-
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rence between the reproduced data and the raw data. Table 4.3 indicates the distribution of
different types of error as a function of factors assumed to contribute significantly to the
variance of the data matrix A. It has been shown further, that RE is always larger than XE and
the amount of imbedded error that is not extractable by FA is aways larger than zero
(Mainowski 1977). The differences in RE between different selections of n give the amount of
error taken out by the additional factor(s). As can be seen, this difference is aways > 3 - 10
for 1-3 factors. A fourth factor would carry an average signal of only 1.1 - 10 cm™. It would
be very difficult to extract information out of such aweak spectroscopic signal. Therefore, the
conclusion on three significant factors in the given system is further supported.

The value of XE for three significant factors in table 4.3 indicates an improvement of the
experimental data by an average of 2.7 - 10 absorption units per data point due to AFA. It is
equally evident from table 4.3 that AFA is able to improve the experimenta data, however the
imbedded error |E criterion estimates that an average of 1.4 - 10" absorption units of random

errors and bias remain in the data reproduced from the first three row and column
eigenvectors.

Bartlett’s (1950) ¢ criterion is aso calculated from the correlation matrix D = A A™. The
eigenvaues| arethe p roots for which eq. 4.8 holds

D-1]=0, (4.8)
where D is a correlation matrix of p variables. For the determinant |D| holds [D| =1 11 ;... | ,.

The test quantity is the c* value

c’=-(n-p+0.5)InDpyy (4.9)

where n gives the number of independent observations less one, p gives the degree of freedom
and k the number of eigenvalues aready tested. The quantity Dy is calculated by eg. 4.10

i ép-1,.-1,..1
D, =D/il.l...I 12t K
p-k || 1Tl kg p-k

y (4.10)
b

Thus, comparing ¢ with the desired probability level of the tabulated ¢ distribution, the null
hypothesis can be tested for each number of factors. In table 4.2, the ¢ value is rearranged to
make degree of freedom to the test criterion. Hence, a number of factors is considered
significant if the value given as c¢? is larger than the squared degree of freedom, given as c?
expectation value in the last column. It is evident that the c? criterion likewise advocates three
factors.
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As afina test, the SCREE test (Cattell 1966) is given in fig. 4.5. The SCREE test is a plot
of the residua percent variance remaining in the data matrix after removing variances explained
by the larger eigenvectors. For given data matrix A, the SCREE test is shown in fig. 4.5.
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Fig. 4.5 : Residual percent variance as a function of factors (eigenvectors) included into
reproduction of the absorption matrix A (SCREE test) (Cattell 1966, Cattell 1978).

By multiplication of a row eigenvector E*; and a column eigenvector C*; vector a matrix
D" = E*; C", is obtained. The variance in D*; can removed from the experimental data matrix
A, resulting in a new data matrix A", that does not contain variance explained by matrix A”;
hence A", = A - D*,.. Of course, the experimental variance of the second largest column and
row eigenvectors can be removed from A*; in a similar way, thus creating matrix A*,. The
residual variance of matrices A*, can be expressed by the eigenvalues obtained from AFA. This
resdud variance RV isgiven by eg. 4.11:

k=p
RV(AY)= &1 ., (4.11)

k=n+1

with p giving the total number of eigenvalues, here 26.
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If RV is normalized by the total sum of eigenvectors the residua percent variance (RPV) is
obtained. This residua percent variance is given in fig. 4.5 as a function of the number of
eigenvalues removed from data matrix A. The SCREE test suggests a borderline between
statistically significant eigenvalues and eigenvalues due to noise for that value n, for which the
RPV curve levels out. In the present case, this decision can be based on linear regression.
Those eigenvalues are taken as significant only rising above the 95% confidence limit given by
the regression line of points n to p calculated by the well-known procedure of Working and
Hotelling (1929). This point is found at n=3 from fig. 4.5. The SCREE procedure therefore
takes the three largest eigenvalues as significant, while the remaining p-3 = 23 eigenvectors
and eigenvalues are considered as noise.

Hence, the result from AFA is a matrix Az calculated from the first three eigenvalues and
eigenvectors by Az = U3 Sg3 Es.. Thisimpliesthat instead of 181 x 26 data points, only 181 x 3
data points have to be handled in the further data treatment and that bias and noise has been
eliminated from the data analysis. Hence, AFA smoothes the experimental data and eases the
data analysis.

4.4 | dentification of Single Component Spectra
The three factors obtained from AFA however are obtained in a mathematically abstract

form and void of physical significance. For illustration the first six abstract factors are shown in
fig. 4.6.
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4.4.1 | dentification of the Second Factor

From chemical reasoning it isimmediately evident that one factor is the absorption spectrum
of the UO,2*(aq) ion. In order to get an unbiased estimate on the second factor, the data
matrix A was reduced by an iterative procedure for eliminating columns (spectra) with the aim
to reduce the third eigenvalue to insignificance. The resulting two-factor matrix D, is
composed of ten of the 26 spectra. In fig. 4.2, these samples are indicated by open circles.

Further analysis concentrates on the matrix D, composed of these ten two-factor spectra.
Matrix D, is submitted to AFA. The abstract factor matrix is then reduced to matrix D,* = E*
C* of the first two row and column eigenvectors, resp. The further analysis concentrated on
the identification of the second factor, because the first factor is already recognized as the
UO,*(a) UV-Vis spectrum. A uniqueness test (Mainowski 1991, Hopke 1989) indicated,
that there are no absorptions at wavelengths specific for either of the both factors. Key Set
Factor Analysis (Malinowski 1982) therefore is not applicable to separate the both
components. An estimate for the yet unknown second component therefore is obtained by re-
peatedly subtracting an arbitrary amount of a UO,** spectrum from a certain two-factor
spectrum. The only constraint applied in this procedure was the non-negativity of absorbances
in the resulting second-factor test spectrum. By this procedure, sets of possible second factor
spectra are obtained. These spectra are then submitted to Target Factor Analysis (TFA) and
Target Iteration (Rozett & McLaughlin Petersen 1975, Malinowski 1991, Hopke 1989,
Roscoe & Hopke 1981). TFA is aleast squares procedure searching the best fit of a suspected
factor to a data matrix. One of the benefits of TFA is to improve the targeted factor towards
the needs of the data matrix and even to give estimates for unmeasured data points
(Malinowski 1991).

To test a suspected factor 5 (e.g. a suspected single component spectrum), a rotation
matrix T is needed that rotates the eigenvectors of the abstract matrices E' and C', which are
void of physical meaning, into meaningful vectors. The rotation matrix T can be composed
vector by vector, a process called target testing. For a suspected factor s (test vector), the
transformation vector t; is obtained from eg. 4.12:

t ={DTD}-1DT 5 =D*s5 (4.12)

where DT indicates transposed D matrix , D-1 indicates the inverse of D matrix and {D' D}
D" = D" is known as the pseudo inverse of D (Peters & Wilkinson 1970).

The result of this procedure is given in fig. 4.7, presenting the spectrum of the second factor
as a result of TFA. It is compared to the well-known spectrum of the UO,**(ag) ion.
Obviousdly, the second factor spectrum given in fig. 4.7 is quite Similar to the spectrum of
dimeric (UO,),(OH),** from ref. (Meinrath et a. 1993). This finding is not trivial, because until
now any reference was made to chemical modelling.
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Target Testing is affected by random errors and bias from both the data matrix and the
tested vector 5. By AFA, errors in the data matrix are reduced. Nevertheless, AFA is not able
to generate "pure”, error-free data. These errors will also affect a test vector s in the Target
Transformation eg. 4.12. As estimators for the mutual interaction of matrices E' or C', test
vectors s and predicted vectors x, the following figures of merit have been derived
(Malinowski 1978): the apparent error AET in the suspected test vector s:

N

(s, %)’ (4.13)
AET = %

the root mean square error REP in the predicted vector x
REP =RE (t"t)? (4.14)

and thereal error RET in the predicted vector X :
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Table 4.4: Estimators RET, AET and REP for the reliability of single component spectra of
UO,*(aq), (UO,)2(OH),™, (UO)3(OH)s" and UO,CO;° as well as the value of SPOIL function

speCIeS U022+(aq) (UOZ)Z(OH)22+ (UOz)g(OH)5+ UOQCOgo
Emax 9.7 mol™* cm* 101 | mol™ em* 4741 moltem* 361 mol™tem?
| max 413.8 nm 421.8 nm 429.0 nm 400 nm (sh)
(sh:shoulder)
Matrix A:
RET 0.05 1.0 4.1 19.6
AET 0.23 1.3 5.8 19.8
REP 0.22 0.8 4.1 2.0
SPOIL 0.22 13 (1.0) 10
Matrix B:
RET 0.15 0.8 8.1 17.56
AET 0.36 1.3 3.0 17.9
REP 0.39 1.0 8.7 3.1
SPOIL 0.4 0.8 0.9 5.6
ér(xj - Yj )2 ’
- . (4.15)

The AET parameter estimates effects of Target Transformation on the tested vector s itself.
If the suspected factor s is a true factor of the factor space spanned by the matrix E* (Eq.
4.12), the difference between suspected vector s and predicted vector x will be minimal.

The root mean square error REP estimates interaction between matrix E* and the vectors s
and x, the latter both vectors represented by the norm of the transformation vector t. The real
error in the predicted vector RET encompasses as unmeasurable quantity the pure, error-free
predicted vector x. However, if the estimators AET and REP are evaluated, RET can be
estimated from eqg. 4.16:

RET = JAET? - REP2, (4.16)
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By eg. 4.16, an estimate on the absolute error in the test vector with respect to its
compatibility with the data matrix can be obtained.

In Table 4.4, these estimators are summarized for target testing of single component spectra
of UO,**(ag), (UO,)2(OH),*" and UO,CO5° with maxima of molar absorptions. €s3s = 9.7 |
mol™ em™ of UO,*(aq), €215 = 101 | mol™ cm* of (UO,),(OH),** and 4000 = 36 | mol™ cm™*
of UO,CO3° (Meinrath 1997b). The data is tested for two data matrices. Matrix A is composed
of al 26 spectra, while data B contains only those spectra that are not two component spectra
used to evaluate the single component spectrum of the (UO,),(OH),** species. Therefore,
matrix B does not contain experimental evidence used to derive this spectrum.

Fig. 4.8 . Effect of target testing on single
— ¢ predicted vector component  spectra  (UO,),(OH),**  and
: test vector UOZC03

1204
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Recently, spectroscopic evidence is forwarded that UO,COs° is detectable in aqueous
U(VI1) solution at free carbonate concentrations as low as Ig [COs*] > -11 [Meinrath et al.
1996). In the present case, free carbonate concentrations Ig [COs*] » -11 are calculated for
solutions at about pH 4.8. Because of the high tendency of U(VI) to form carbonato com-
plexes even at extremely low free carbonate concentrations, UO,COs;° has been included into
the target testing procedure. The poor performance of the UO,CO;° test vector is evident from
table 4.4. The AET is about 50% of the molar absorption at 400 nm. This becomes also
evident from the comparison between test vector (the single component spectrum) and the pre-
dicted vector of UO,COs° in fig. 4.8. The tested vector is strongly distorted. The values of
RET and REP in table 4.4 aso indicate that the single component spectrum of UO,CO;5° is not
part of the vector space spanned by the experimental spectra of either matrix A or matrix B.

The picture looks different for the single component spectra of UO,**(ag) and
(UOy)2(OH),>". The respective AET estimators in table 4.4 indicate good reproduction of the
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test vectors when fitted to the vector space of the experimental data. Furthermore, the
estimators AET, RET and REP are of similar magnitude for each test vector, thus indicating
that none of the test vector contains gross errors that would affect the validity of the target
testing procedures as well as the subsequent analyses. The single component spectrum of
UO,*(ag) has been obtained from a single-species solution at high concentration. Its quality is
indicated by the small value of RET. The similarity of AET and REP indicates that the main
error in the predicted vector originates from the data matrix. The situation is different for the
single component spectrum of (UO,),(OH).**. The absolute error in the test vector RET is
larger. However, the estimators RET, AET and REP have to be judged relative to the molar
absorption emax.

A further helpful estimator is the so-called SPOIL function that indicates the effect of
reproducing the data matrix by predicted vector instead of the abstract eigenvectors in E*.
Malinowski (1978) has suggested the SPOIL function as a crude estimate for the acceptability
of a predicted vector. SPOIL estimators < 1.5 indicate highly acceptable predicted vectors,
while SPOIL > 4.5 indicates only poorly acceptable predicted vectors. From table 4.4, all
SPOIL estimates fall into the highly acceptable class with exception of the UO,COs° single
component spectrum. Therefore, interference of carbonato species in the present study can be
excluded with good confidence.

Spectral contributions due to species UO,**(aq) and (UO,),(OH),** are fully acceptable as
relevant factor in the given chemical system. In fig. 4.8, both the test and predicted vector of
the single component spectrum of (UO,),(OH),*" are given, the respective rotation vector t,,
(eg. 4.12) being derived from matrix B. The test vector and the predicted vector are nearly
coinciding. Therefore, this single component spectrum is independently validated by data diffe-
rent from those it has been derived from. Furthermore, results are not much different for matrix
A, asisindicated by the numerical data given in table 4.4.

4.4.2 | dentification of the Third Factor

From these three factors that are found to span the data space of matrix A, two factors are
therefore identified and verified by statistical criteria. The following discussion will concentrate
on the identification of the third factor.

Several strategies can be adopted to identify the yet unknown single component spectrum of
the third factor. A simple iterative procedure is as follows. Select some arbitrary three-com-
ponent spectra and estimate the chemical composition of the solutions from the known
analytical data and some guessed formation constants. Then, by simple matrix operation from

Q=YZ (4.173)

where Q is the absorption matrix composed of n experimental absorption spectra, Y is the yet
unknown matrix of single component spectra and Z is the matrix of guessed species
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concentrations. Matrix Y, which can be considered as a crude first approximation to the single
component spectra matrix E, is obtained by

Z'Q=Y. (4.17b)
The assumed number of species n determines the number of spectrato be used in matrix Q.

Since two single component spectra, UO,*"(ag) and (UO,),(OH),*, are aready known, an
iterative procedure can be started that varies the formation constants for calculation of solution
compositions in Z in order to minimize the differences between known and estimated single
component spectra of UO,** and (UO5),(OH),* in Y.

The various approximations of the single component spectrum of (UO,)s;(OH)s" thus
derived are submitted to Target Iteration as described above. The resulting third-factor
spectrum is shown in fig. 4.9.

80 Fig. 4.9 : Single component spectrum

of the species (UO,)3(OH)s". Dotted
lines represent 99% confidence limits.
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A molar absorption of 474 + 7 | mol™ cm™ a 429.0 nm is found for the low-energy
electronic transition, much higher than observed for the (UO,),(OH),* species of 101 + 2 |
mol™ cm™. The increase in the molar absorption due to oligomerization of UO,**(aq) to the
hydrolysis products is still considerable when normalizing molar absorptions to the number of
uranyl (V1) groups per species: 9.7 (UO,**(aq)) : 50.5 ((UO,),(OH),*): 158 ((UO,)s(OH)s").
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By application of the iterative procedure eq. 4.17, it is found that interpretation of the
experimental data in the given pH and U(VI) concentration range by a four-species model
(UO,*"(ag), UO,OH", (UO,)(OH),* and (UO,)3(OH)s") will either result in negligible
UO,OH" concentrations or negative molar absorptions.

4.5 Statistical Treatment

By using the single component spectra of UO,*", (UO,)2(OH).** and (UO,)s(OH)s", the
transformation matrix T can be established from combining the transformations vectors tyo, t,
and i35 of U022+(aq), (UOZ)Z(OH)22+ and (UOz)g(OH)5+, resp.:

T= [ tlo to t35 ] (418)

Using the transformation matrix T = [tyo t tss], the abstract two-factor matrices E' and C' can
be transformed into physically meaningful absorption and concentration matrices E containing
the estimated single component spectra of the three species and C containing the estimated
concentrations of each of these speciesin the 26 solutions by eq. 4.19 with results summarized
intable 4.5:

A'=EC=E TT1C (4.19)

The application of matrix T in Target Factor Analysis eq. 4.19 yields single component
spectra matrix E and concentration matrix C simultaneously. From experimentally determined
pH valuesin each solution and individual species concentrations in each sample, obtained in the
columns of matrix C, formation constants of the respective solution species can be calculated.
The quality of the factor analysis can further assessed by comparing measured total U(VI) con-
centrations with those calculated by summing over the species concentrations obtained in
matrix C.

It is obvious from the last column (D [%)]) of table 4.5 that the over-all agreement between
calculated and measured total concentrations is satisfactory with a few distinct exceptions.
These exceptions are in the data obtained at pH 4.27s and pH 4.77s, where the deviations given
by in column D [%)] indicate extraneous data.

In both data sets, the uncertainty given for [UO,**(ag)] is >1000 %, thus indicating that the
spectral contributions due to UO,*(ag) are beyond significance. However, due to the small
molar absorption of the UO,*(ag) species, it may nevertheless carry a considerable U(V1) con-
centration that is missed in the added concentrations of [U(VI)]cac.

In fig. 4.10, the UV-Vis spectrum at pH 4.275 is shown together with the spectral
contributions of the individual species. The dashed lines represent 99% confidence limits. It is
evident from fig. 4.10 that the spectral contribution of UO,*(aq) is too small to be reliably
assessed. As a conseguence, formation constants g K'ss from these both solutions has been
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Table 4.5: Individua species concentrations (1s uncertainty in [%]), calculated and measured U(V1)
total concentrations with their percent difference D [%)]

pH [UO,*(ag)] [(UO2)x(OH),>]T  [(UOy)3(OH)sT  [U(VDleae [U(VDlmess D
[%0]
2443 4.77-103(1.4) - - 477-10° 468-108 2
2.786  4.78-103(1.0) - - 478-10° 458-10% 4
2947 401 104(5.9) - - 401-10* 427-10¢ 6
3503  432-103(0.7) 9.33-105(3.6) - 451-10° 453-10% 1
3622  459-103(05) 1.99-104(1.4) - 498-10° 523-108 5
3702  403-103(23) 259-104(4.2) - 455-10° 4.83-10% 6
3746  450-103(3.7) 2.38-104(8.2) - 498-10° 469-108 4
38lp 254-103(1L1) 1.45-104(2.3) - 2.82-10° 307-10° 6
3843  210-103(19) 154-104(3.1) - 2.41-10° 250-10° 4
3847  362-103(L7) 3.83-104(L.9) - 439-10° 4.49-10% 2
3834 1.83-103(1.4) 8.27-105(3.8) - 2.00-10° 2.04-10% 2
403  635-104(3.1) 1.17-105(20.1) - 6.58-10* 6.31-10¢ 4
3939 368-103(1.0) 5.06-104(0.8) 4.49-106(5.0) 4.71-10° 484-10° 3
3980 302:103(28) 547-104(1.8) 4.14-106(12.8) 424-10° 431-10° 2
4209  234-103(31) 7.93-104(1.1) 5.80-105(0.8) 4.10-10° 451-10% 9
425 278-103(6.7) 818-104(27) 7.37-105(1.6) 464-10° 475-10% 2
4254 116-103(79) 122-104(88) 1.06-106(54) 1.41-10° 157-103 9

4275 123-105(>1000) 1.40-103(15) 1.95-104(0.6) 339-10° 520-103 35
43l 870-104(57) 1.34-104(44) 7.81-106(40) 116-10° 1.16-103 O
4361 920-104(9.3) 1.38-104(7.4) 158-105(34) 124-10° 114-103 9
4373  528-104(6.8) 6.96-105(6.7) 561-106(44) 7.37-10° 6.85-104 8
4456  351-104(69) 4.04-105(7.0) 2.77-106(54) 4.40-10* 3.93-104 10
4474  307-104(82) 3.30-105(9.0) 248-106(64) 3.80-10* 355-104 7
451  395.104(6.8) 7.48-105(4.25) 4.93-106(34) 559-10° 579-104 3
4.713  283-104(146) 1.38-104(3.8) 235-105(L1) 6.12-10° 6.62-104 7
4.776  2.20-107(>1000) 1.15-104(85) 213-105(24) 294-10° 437-10% 32

evaluated from the concentration of (UO,)2(OH).** and the formation constant Ig K'z; = -6.14s
+ 0.085. From this constant and the known concentration of (UO,),(OH),*, an estimation of
[UO,*(ag)] can be caculated: [UO,*(ag)] » 3.5 - 10~° mol I-* for the sample at pH 4.27s and
[UO,*"(ag)] » 3.2 - 10~ mol I"* for the sample at pH 4.77s. These contributions are well able to
explain the differences between [U(VI)]cac and [U(V1)]mes in table 4.5.
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Factor analysis allows ssimultaneous treatment of a great number of observations, which in
turn is suitable for reliable statistical analysis. The uncertainties given in tables 4.5 and 4.6 have
been derived from the residuals between the matrix A of experimental data and the matrix A’ =
E C, calculated on basis of the foregoing factor analysis (Clifford 1973): W= A - A’. From the
columns w; of matrix W, an estimator of the residual variance s;* can be obtained from eq.
4.20:

030 || Mneas =520x10° molI* Fig. 4.10 : Spectra deconvolution
] "CO, = 0.03 kPa _ of the experimental spectrum at pH
pH427, e : experimental )
i Ig Ky, : - - calculated 4275 =+ 0.03s. Dashed lines
021 N 19 Kys:-17.18, £ 030, represent 95% confidence limits in
— s individual species contributions and
5§ o2 99.9% in calculated sum spectrum.
= ] F A~ oo The deconvolution is plotted directly
= from the informations calculated in
o 0,15 .
o 1 matrices E and C.
2
© . (U0
0,10
005 3
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;
wW.'W.
sZ=——° (4.20)
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In order to estimate, how these variances transform into estimates of the uncertainties of the
concentration matrix C, the variance-covariance matrix D of the respective operation is
calculated from eg. 4.21

D=s2(E"E)} (4.21)

The estimators of the standard deviations are given as usua by the sgquare roots of diagonal
elements in the variance-covariance matrix D. To estimate the uncertainties in the single com-
ponent spectra, the vectors wi in eg. 4.20 are formed by the rows of W and r is replaced by c.
In eq. 4.21, matrix E is replaced by matrix C (Clifford 1973). The 99% confidence limits given
for the single component spectra in figs. 4.7 and 4.9 are calculated by this procedure and
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corrected for bias due small sample size by the t-distribution toees = 2.787 (25 degrees of
freedom.).

Table 4.6 : Sample pH (£Cl), formation constants Ig K',, (£Cl) including uncertainty from species
concentrations (cf. Table 4.5), Ig K'» (pH) including uncertainties from both concentration and pH
determination and same datafor Ig K'ss. (confidence intervals Cl = 95%)

pH (xCl) lg K’ (Cl) lg K'2, (pH) lgK'ss (£Cl) lg K'ss (pH)
2.44; + 0.03, - - - -
2.785 + 0.035 - - - -
2.94; + 0.02, - - - -
3.50; + 0.03, -6.12; + 0.04, +0.10; - -
3.62, + 0.02 -6.08; + 0.02, + 0.07, - -
3.70, + 0.04, -6.02, + 0.07; + 0.160 - -
3.746 + 0.025 -6.24; + 0.13, +0.19 - -
3.81, + 0.01, -6.08; + 0.03, + 0.07, - -
3.84; + 0.01, -5.965 + 0.05 + 0.09; - -
3.84; + 0.04, -6.04 + 0.04s +0.125 - -
3.88, + 0.015 -6.19; + 0.05; + 0.09; - -
4.03; + 0.01, -6.426 + 0.24s +0.28, - -
3.93, + 0.02 -6.126 + 0.025 + 0.08, -17.29; + 0.06, +0.21,
3.98, + 0.02; -6.00; + 0.065 +0.11, -17.275 + 0.18, +0.32,
4,204 + 0.03; -6.07, + 0.065 +0.13, -16.94, + 0.08; +0.27,
4.25, + 0.025 -6.36, + 0.21, + 0.26, -16.97; + 0.25 +0.38,
4.25, + 0.015 -6.30, + 0.14, +0.17; -17.29, + 0.19 +0.27;
4.275 + 0.03; - - -17.184 + 0.23 + 0.41g
4315+ 0.02, -6.20; + 0.135 +0.17; -17.055 + 0.18; + 0.28;
4.36, + 0.015 -6.329 * 0.22; + 0.25 -17.045 + 0.276 +0.35,
4.375 + 0.015 -6.26, + 0.17s + 0.20; -16.98, + 0.21, + 0.29
4.45¢ + 0.015 -6.21 + 0.17, +0.21; -17.025 + 0.22; + 0.30;
4.47, + 0.02, -6.22, + 0.22, + 0.260 -16.985 + 0.27, +0.37,
451, + 0.01; -6.165 + 0.155 +0.18, -17.205 + 0.205 +0.29;
4715+ 0.01, -6.043 + 0.30, +0.33, -17.125 + 0.41, + 0.50
4775+ 0.0, - - -17.34,+ 0.23 + 0.30¢

In table 4.6, confidence intervals of derived formation constants inversely correlate with the
respective concentration estimates of UO,**(aq) (cf. table 4.5). This correlation mainly affects
the uncertainties in Ig K'ss, because 1g K'2; can be determined at sufficiently high UO,*(aq)
concentrations in a two-component system (Meinrath et al. 1993, Meinrath & Schweinberger
1996). The constant g K'ss however has to be determined in a three-component system at
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comparatively low UO,**(aq) concentrations. Nevertheless, the mean values of Ig K'ss are quite
consistent, thus indicating satisfactory precision of the chemometric approach, while the
statistical procedures draw a correct picture of the relations and correlations within the
analyzed system.

4.6 Estimation of Uncertaintiesin pH Values

Calculated formation constants Ig K'», and Ig K'ss, given in table 4.6 in the second and
fourth column, resp., take into account 95% confidence intervals in the evaluated species con-
centrations given in brackets in table 4.5, while pH is treated as an error-free quantity. Due to
the strong dependence of the formation constants of (UO,),(OH),** and (UO,)3(OH)s":

Ig K'22 = 19 [(UO,)2(OH),*] - 21g [UO*(aq)] - 2 pH - 2 1g g4+
Ig K'ss = 1g [(UO2)s(OH)s] - 31g [UO,(aq)] - 5 pH - 51g g4+

on pH with a factor of 2 and 5 resp., it is highly desirable to have an estimate on the
uncertainty associated with an individual pH measurement. Unfortunately, procedures recom-
mended by IUPAC for determination of pH (Bates 1981, Covington et al. 1983) are not
designed to allow for an estimation of statistical parameters associated with a given
measurement. Furthermore, two independent procedures are incorporated into the IUPAC
recommendations: the single standard pH scale of the British Standard Institution (BSI)
(Covington et al. 1983) and the so-called "bracketing procedure” of NIST (Bates 1981). In
given context, BSI definition seems especially unsuitable, because it is incorporating the
theoretical Nernstian slope of an electrochemical cell to relate glass electrode potentials to pH
values. However, by thermodynamical reasoning, it has been shown that glass electrodes will
not exhibit ideal Nernstian behaviour (Baucke 1994). These points have been discussed
elsewhere in more detail (Naumann et a. 1994) and are confirmed in this study.

Therefore, an approach based on a multiple point calibration procedure is chosen that has
been the laboratory procedure during the past decade. Recently, this procedure has been
suggested independently as standard pH calibration procedure (Baucke et al. 1993). A
combination glass electrode is calibrated against severa pH standards traced back to NIST
reference material. The data pairs (mV vs. pH) are interpreted by conventiona linear
regression and the statistical parameters are evauated by linear calibration curves (Manddl &
Linnig 1957). A detailed outlineis given in (Meinrath 1997a).

From statistical treatment of experimental data, unbiased 95% confidence limits are estima-
ted for each pH value and given in the first column of table 4.6. These uncertainties have been
included into the estimation of standard deviations for each of the g K',; and Ig K'ss in the third
and fifth column of table 4.6. As shown in the Appendix, variances in pH within the 95%-limits
given in the first column of table 4.6 are consistent and correspond to random errors associated
with the determination of pH. The precision x of pH determination is found to be x = + 0.025
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pH units. This x value is in agreement with values reported for x in the literature (Ebel 1978,
Schmitz 1994, Davison & Woof 1985, Stapanian & Metcalf 1990, Metcalf 1987).

Comparison of columns g K'x (= CI) to columns Ig K'y (pH) (xx is either 22 or 35) in table
4.6 further shows that uncertainty in pH determination contribute in similar magnitude to the
over-all uncertainty in the derived formation constant as does the uncertainty in determination
of single species concentrations.

4.7 Evaluation of Formation Constants

The derived formation constants given in table 4.6 are not fitting parameters. Chemometric
analysis yields single species concentrations from the inverse of transformation matrix T,
derived from least squares procedure on matrix E*. Up to this stage, no chemical model ap-
plies. A chemical model is introduced eventually to interpret the data in matrix C. Consistency
of formation constants given in table 4.6 therefore is an additional confirmation of present
anayss.

From the individual formation constants and their associated uncertainties, mean values and
95% confidence limits can be evaluated by distribution-free order satistics. First, the
consistency of datais tested by Q test on extraneous data (Dixon 1950, Rorabacher 1991). Q
testing is a commonly applied procedure to test on outlying data, if the datas distribution
function is unknown. The tested data are the upper and lower extreme values of Ig K';; and Ig
K'ss, resp in table 4.6. By applying this test procedure, confidence levels are found always
larger than 50%. Therefore, to discard any of the tested values as extraneous data is incorrect
with high probability. In other words, Q test indicates that the variances observed within the
evauated formation constants in table 4.6 are due to random effects only and gross errors are
absent.

To investigate for consistency of derived data, non-parametric statistics (Lord 1947) are
used to evaluate confidence limits of the formation constants |g K',; and Ig K'ss. Confidence
intervals Cl are calculated from the range d of the data and a confidence factor ta, which is
0.122 (95% confidence interval) for 21 observations and t« = 0.170 for 14 observations (Lord
1947), according to:

Close, = d tgo.s) (4.22)

From eg. 4.22 and the ranges d(lg K'») = 0.461 and d(Ilg K'ss) = 0.404, the following
unweighted data are cal culated:

Ig K'y = -6.168 t 0055
Ig K'ss = -17.125 + 0.069
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An alternative procedure calculates mean values and standard deviations from data sets of
varying reliability by weighted means, where the weights are the reciprocals of the squared
standard deviation (Korin 1975) given in table 4.6 for each datum. The results are:

Ig K'y = -6.145 t 0088
Ig K'ss =-17.14, + 0.13g

The mean values and 95% confidence limits derived from the both evauation methods are not
significantly different.

Results of the foregoing analysis have been included into figs. 4.2 and 4.3. In fig. 4.3, three-
factor spectra are given as blue curves, three-factor spectra in green. The open circles in fig.
4.2 have been identified by factor analysis as two-component spectra, while the dot-centred
circles are pure UO,*(ag) spectra. The solid circles are three-component spectra. The lines 1
and 2 are calculated from the formation constants obtained in this study. These lines indicate
presence of (UO,),(OH),*" and (UO,)s(OH)s" with relative concentrations above 1%. Thus the
foregoing analysis lead to a clear picture of hydrolysed U(VI) solutions. As will be outlined in
the chapter 6 of this report, this quite unexpected consistency can answer a series of question
that have been unresolved problems of U(V1) spectroscopy.

Due to the importance of U(V1) hydrolysis in many fields like nuclear waste disposal, UO,
pellet corrosion, remediation of areas contaminated by uranium mining and last not least safety
analysis of nuclear waste repositories as well as in databases for geochemical modelling, these
results are of major importance.

In the following, decisive evidence will be forwarded that these results are sound and
consistent.
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5. Deconvoluted Spectra
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As afirgt evidence, deconvolution of 23 two- and three-component hydrolysis spectra are
given in the following. All parameters of these spectra are given in tables 4.5 and 4.6.
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The set of 23 interpreted spectra of
hydrolyzed U(VI) solutions proves that
only three factors are necessary to
quantitatively understand the behaviour.
These conditions correspond to the
concentration range studied in the over-
whelming amount of currently available
literature data, especially by potentiometric
titrations.

A final validation of these single-component spectrais obtained, if the spectra can be shown
to satisfactorily interpret solutions of hydrolyzed U(VI) species under different conditions. This
has been demonstrated recently (Meinrath 1998d) in a quantitative manner. Any hint on
unexplained experimental variance has been observed despite the fact that the U(VI)
concentration range is further extended.
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In table 5.1, some experimental conditions studied in selected references are given for illu-
stration. It is evident that investigation of U(VI) hydrolytic behaviour is preferentialy studied
at elevated U(V1) concentrations, while few data are available for U(V1) concentrations below
10” M. Only studies at a constant ionic strength of 0.1 M have been included in table 5.1
because a) these studies are compatible with conditions discussed here and b) the pH range
accessible for experimental study is probably even more limited at higher ionic strengths due to
formation of sparingly soluble uranates. There is agreement in recent literature that UO; ~ 2
H,O(s), the solubility limiting solid of U(VI) under ambient conditions and pH <7, readily
transforms to a sodium containing uranate at pH >7 even at low ionic strength of = 0.1 M
NaClO, (Kramer-Schnabel et a. 1992, Meinrath 1997b). Formation of uranates with other
cations, e.g. Ca", Mg® or Ni*" is reported (Vochten & Van Haverbeke 1990, Vochten et al.
1991). Thus, in studies at higher concentrations of background electrolytes, the solubility of
U(VI) will be further reduced, requiring detailed analysis of these new phases and their specific
interaction with the system to be studied.

Table 5.1 : Experimental conditions and methods summarized from some representative studies
of U(VI) hydrolysisreported in literature for u= 0.1 M solutions at 25 °C.

g [U(VI)] range pH range method  conditions ref.
-2t0-3.5 4-48 sol. NaClO, Maeinrath & Kimura1993
-25t0-4 4-48 sol. NaClO, Katoet al. 1996
-2.5t0-4.6 4.3-57 sol. NaClO,  Kramer-Schnabel et a. 1992
tracer 53-73 extr. NaClO, A
-3 28-438 tit. KNO; B
tracer 45-7 extr. NaClO, C
-2.7t0-3 5-85 tit. NaClO, D
-3t0-3.3 3-7 tit. KNO; E
-3 38-4.7 tit. NaClO, F
-1to-4 25-125 tit. NaNO; G
-2.7t0-3.7 32-6 tit. KNO; H
-2t0-3.3 19-6.1 tit. NaClO, |
sol. : solubility study; extr. : solvent extraction; tit. : potentiometric titration

A: Choppin, G.R., Mathur, J.N. (1991): Radiochim. Acta, 52/53, 25

B: Kotvanova, M K., Evseev, A.M., Borisova, A.P., Torchenkova, E.A., Zhakarov, S.V.:
(1984), Moskow Univ. Chem. Bull. (USA), 37

C: Caceci, M.S., Choppin, G.R. (1983): Radiochim. Acta, 33, 207

D: Maya, L.; (1982): Inorg. Chem., 21, 2895

E: Overwoall, P.A., Lund, W. (1982): Anal. Chim. Acta, 143 (1982), 153

F: Vaniotalo, A., M&kitie, O. (1981): Finn. Chem. Lett., 102

G: Pongi, N.K., Double, G., Hurwic, J. (1980): Bull. Soc. Chim. Fr., 1-347

H: Sylva, R.N., Davidson, M.R. (1979): J. Chem. Soc. Dalton Trans., 465

I: Tsymbal, C. (1969): Report CEA-R-3476, CEA/Saclay
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Hence, a series of investigations from different laboratories have been devoted to a precise
assessment of UO; " 2 H,O(s) solubility limits in the past half decade. Previous knowledge has
been found sparingly and questionable (Meinrath & Kimura 1993). Results are summarized in
(Meinrath et a. 1996). By reference to table 5.1, it becomes evident that the 26 solutions given
in fig. 4.2 cover the U(VI)-pH region investigated in previous studies and therefore allow for
direct comparison These data furthermore provide a consistent set of evidence that further
oligomeric hydrolysis species, e.g. (UO,),OH3*

The comparison of experimental ranges studied in literature with fig. 4.2 further indicates
that conditions investigated in a series of literature studies have lead to supersaturated
solutions. To give a striking example, Maya (1982) investigates U(VI) hydrolysis in pH and
concentration range within the stability field of the UO; " 2 H,O phase. The marked difference
between both the reviews of IAEA (1992) and NEA (1992) as well as the results of present
study has to be explained by the different weight the precipitation problem has received during
the different evaluations.

Comparison of table 5.1 with fig. 4.2 strongly suggests that species not verified from direct
spectroscopic assessment have entered discussion on basis of studies in supersaturated
solutions. It has further to be noted that a structure of these additional hydrolysis species has
apparently never been discussed. For species verified here by UV-Vis spectroscopy, detailed
structural analyses are available (Aberg 1969, Aberg 1970).

Formation constant |g K’,, has been reported rather consistently, ranging between -5.68 £
Ig K’2, £ -6.45. In contrast, formation of (UOs)3(OH)s" has been reported with a scatter of
more than two orders of magnitude -15.64 £ |g K’'ss £ -17.7 in 0.1 M solutions, despite
comparable experimental conditions. Figure 4.2 shows that (UO,)s(OH)s" is formed only in
minute relative amounts in a pH region close to the saturation limit and therefore can not be
detected precisely by concentration dependent methods. UV-Vis spectroscopy is in a more
comfortable situation because of high molar absorptions found for these species. €55 = 101
21 mol™ em™ for (UO,),(OH),*" and es0 = 474 + 7 | mol™ em™ for (UO,)3(OH)s™ to be
contrasted with eysg = 9.7 = 0.2 | mol™ cm™ found for UO,**. The lowest (UO,)3(OH)s"
concentration speciated in this study was (1 + 0.25) 10° mol ™.

6. Comparison with Fluorescence Spectra

Luminescence of hexavaent uranium in solution and solid state has been known for more
than 150 years. Study of luminescence behaviour of the UO,™ entity has given -direct or
indirect- rise to several fundamental discoveries like the Stokes shift or discovery of
radioactivity. Uranyl(V1) luminescence is currently understood being a result of the molecular
0O=U=0 structure and the fluorescent state being the lowest lying member of a manifold of a
manifold of electron transfer states (Jergensen & Reisfeld 1982, Denning et al. 1997b).

57 Freiberg On-line Geoscience Vol. 1 (1998) http:\www.geo.tu-freiberg\fog



Application of U(VI) luminescence to speciation of U(VI) however has forwarded
discrepant results and interpretations. Especialy dependence of fluorescence behaviour on pH
is discussed in terms of mutually exclusive interpretations. While in acidic solutions lumi-
nescence decay is single-exponential with a emission life time of about 1 us, a double-expo-
nential decay has been reported when pH was shifted to about pH 3 (Deschaux &
Marcantonatos 1979) with alonger life time of the second decay. Double-exponential decay is
interpreted by formation of an exciplex H(UO,)," (Deschaux & Marcantonatos 1979),
reversible crossing between two electronically excited states *U and *X (Formosinho et al.
1984) or formation of additional solution species, eg. UO,OH® (Zheng et a. 1986) or
(UOy)o(OH),™ (Park et al. 1990, Meinrath et al. 1993), resp. These interpretations are in
satisfactory agreement with the respective reported experimental results. To reject any of these
interpretations in favour of another is found difficult (Jergensen & Reisfeld 1982). The present
discusson will forward conclusive experimental evidence to regect two of the three
interpretations.

In the sequel, correlations between UV-Vis and fluorescence spectra of U(V1) species are
reported. Since similar data could not be found in literature, suitable data have been evaluated
in exhaustive studies during the past half decade. Carbonato and hydrolysis species have been
selected for these studies because the structures of these compounds in solution are available,
the UV-Vis spectra are accessible with reasonable effort and spectral features of single
component spectra are found characteristic for each species. Both hydroxide and carbonate
readily coordinate to the UO,*" entity and it is known that these coordination is accompanied
by drastic spectroscopic changes.

The following discussion therefore not only offers new insight into fundamental properties
of U(VI) photophysics but also into the consistency of interpretations adopted for
interpretation of the chemical systems under study. Due to restriction of space, only a
abbreviated discussion will be given. A complete description of the work will be given
elsawhere.

The UV-Vis absorption spectrum of UO,**(aq) is characterized by a broad and unusually
weak transition with a maximum at 413.8 nm and integral oscillator strength f10 = 1.4 10°
(Jergensen & Reisfeld 1982), superimposed by the symmetric streching vibration of the linear
O=U=0 group (Rabinovitch & Belford 1964). This characteristic low energy electronic
trangition is followed by a steeply increasing absorption continuously extending toward the UV
region without characteristic features.

In non-complexing agueous solutions, fluorescence life time of UO,>" fluorescence is about
1 us at 25 °C. Dependence of the fluorescence life times as well as the emission spectra from
temperature and presence of gquenchers like inorganic and organic substances, e.g. Fe(ll1), CI°
and carboxylic acids or alcohols (Gisten 1983) has been studied in detail.
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Fig. 6.1 : Ball-and-
stick representations
of the species
(UO2)2(OH),™ (1),
(UOy)s(OH)s™ (1)
and UO,CO3(H,0)3

“(I11). Black balls re-

present uranium, with
balls represent
oxygen, The carbo-
nate atom is given

grey.

Uranium(VI1) is forming oligomeric
hydrolysis species in agqueous solutions
(Sutton 1949, Rush & Johnson 1963)
and solution structures of the species are
shown in fig. 6.1 (Aberg 1970, Meinrath
1996). It is obvious that the species
(UO,)3(OH)s" should be given as
(UO,)sO0(0OH);". To avoid confusion
with literature, the former, more com-
mon formula is retained. The carbonato
gpecies Il is included. The correct
formula UO,CO3(H,0); will be abbrevia-
ted as UO,COs° in the following. A
uranyl entity in species| - I11 is approxi-
mately pentagonally coordinated in the
equatoria sphere. In |, the average O-U
distance is 240 pm. The same holds for
[, but with 223 pm the central oxygen is
closer to uranium than the other oxygens
(Aberg 1970). For UO,COs°, 240 pm -
243 pm have been found as the most
likely U-O distances (Meinrath 1996).

Table 6.1: Spectral data of the species UO,2*, (UO5),(OH),2*, (UO,)5(OH)s* and UO,CO5°

UO2t  (UO,),(OH)?2  (UO,)5(OH)s* UO,COz°
+
absorption spectrum
absorption maximum [nm] 413.8 421.8 429.0 400 (sh)
molar absorption [| mol-1 cmr] 9.7+02 101+ 2 474+ 7 36+3
integral oscillator strength f per 1.7°10* 1-10° 2:10° 1.6°10°
U atom
emission spectrum
lifetime [ps] 09+0.3 29+04 71 35+5
emission maxima [nm| 473, 488 499, 519 500, 516 450(sh), 464
509, 534, 542, 556 533, 554 481, 504
560, 588 532, 548(sh)
Stokes threshold [nm] 488 + 0.7 479+ 1 499+ 15 464 + 0.9
sh: shoulder
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Correlations between absorption and emission spectra of compounds | - |11 are given in
figs. 6.2-6.4. Since an absolute fluorescence intensity measure does not exist, fluorescence
intensities are given in relative units and no detailed conclusions concerning relative intensities
between different spectra should be drawn from fig. 6.2 - 6.4. Since fluorescence emission
depends on the amount of absorbed radiation according to eg. 6.1 (Perkampus 1995)

|f'q:|0'ff'2.303'a 'C'd, (61)
with

1 : fluorescence intensity at wavelength q

l, : intensity of the excitation source

F ¢ : fluorescence quantum yield

g : decadic molar absorption at excitation wavelength | in| mol-1 cnmrl
¢ : concentration of fluorescent substancein mol 1™

d: path length in cm,

the absorption at wavelength | has to be known to derive fluorescence quantum yields. Since
these informations are enclosed in the absorption spectra, present discussion contributes to the
development of fluorescence spectroscopy towards a quantitative method for uranium(V1)
Speciation.

0] “emission Elg. 6.2 : Comparlson of absorp-
= c - absorption tion and emission spectrum of
g 80- = (UO,)2(OH),* (1). The 0-0 transi-
S 5 5 tion isobserved at 497 = 1 nm
g_ 60 1l g
5 g 2
S 40- =
© —_

3 ®

o 20+ \ :

E 5
0 : g
36 4(I)O 4é0 I500 5é0 6(I)O 6|50

wavelength / [nm]

An important relationship between electronic absorption and fluorescent spectrum is the
coincidence of the vibronic 0-0 transition between electronic ground state and fluorescent
excited state. This relationship holds for al four species under study as shown in figs. 3.4 and
6.2 - 6.4 with 0 - O transitions at (488 + 0.7) nm (UO,>), (497 + 1) nm ((UO,)2(OH),*), (499
+ 1.5) nm ((UO,)3(OH)s") and (464 + 0.9) nm (UO,COs°). The standard deviations result from
the 1s uncertainty obtained from statistical treatment of UV-Vis data. A small differencein the
0-0 transition will further result from differences in the atomic coordinates of electronic excited
state and ground state.
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The overlapping bands at 473 nm for UO,**(ag) in fig. 3.4 are well-known and indicate a , hot*
band. Figs. 6.2 - 6.4 do not indicate any inconsistency within the spectral data obtained for the
three species | - Il despite the fact that these data have been derived from separate
experiments in different laboratories and evaluated by sophisticated data treatment techniques.

Fig. 6.3 : Comparison of absorption
- emission and emission spectrum of
+ absorption (UO,)3(OH)s" (11). The 0-0 transition
isobserved at 499 + 1.5 nm.
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4501
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Integral oscillator strengths have been estimated from the absorption spectra by interpreting
the strong absorption edge towards the UV as tail of a Gauss-shape spectral band. The
oscillator strength is obtained from eg. 6.2 (Sykora & Sima 1990):

f =4.32-10° oe(n) dn (6.2)

where 0e(n) dn represents the integral under the spectral curve as function of the wave number
n. Resulting integral oscillator strengths are included in table 6.1. It is obvious from an
inspection of table 6.1 that oscillator strengths are of a similar order of magnitude for the
species (UO,)2(OH),*, (UO,)s(OH)s™ and UO,CO3° when normalized to one U atom : fo, = 1-
10, fs5 = 2°10° and f10; = 1.6° 10>, one order of magnitude higher than f1o = 1.7 10 for the
UO,*(a) species.

 emission Fig. 6.4 : Comparison of absorption and
+ absorption emission spectrum of UO,CO;° (I11). The
0-0 trangition is observed at 464 = 0.9 nm.

Voo =464+1.2nm

molar absorption / [crhl]
N
(6]

o u
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[suun “ja1] 7 Ausuaul
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Oscillator strengths can be related to fluorescence life times by eg. 6.3 (Jergensen &
Reisfeld 1982) :

_e, 2340°° (6.3)
e, PDE?

t

DE : energy of O - O transition in eV
€ : number of mutually orthogonal statesin state i
P : oscillator strength of transition between states 1 and 2

Replacing P by f and assuming e, = e, the following fluorescence life times are calcul ated:
t10=20 s, tr = 3.7 S, tss = 1.9 usand t0; = 2 us. The discrepancy between these figures
and the experimentally observed life timesis obvious (cf. table 6.1).

Low temperature spectroscopic studies of Cs,UO,Cl, crystals with symmetry C,, around
the U atom, CsUO,(NOs); crystas with symmetry D; of the uranyl unit and
NaUO,(CH3;COO); with uranyl site symmetry C; have shown that the characteristic low energy
absorption spectrum of the uranyl is due to transitions to several excited states (Denning et al.
1979b, Denning 1992). For C,, symmetry, 12 electronic origins were identified (Denning 1992,
Schwarz 1985), where only the two lowest lying origins correspond to transitions to the
fluorescent excited state, being split by 1.6 cm™. For D3 symmetry, ten eectronic origins could
be identified, the lowest being the doubly degenerate origin of the fluorescent excited state.
The sodium acetate compound was found more difficult to trace due to strong overlap
between electronic origins and vibrational progressions.

The solution species under study in the present work are approximately pentagonally
coordinated with approximate uranyl site symmetries of Ds, (UO.*"(ag)) and Cu
((UOL)2(OH),*, (UOy)s(OH)s", UO,CO5(H,0)s). Hence, transfer of results from the low
temperature single crystal studies to room temperature solution species with different site
symmetries has to be done with caution. However, the single crystal studies indicate that
conclusions of fluorescence life times t on basis of the integral oscillator strength f are
midleading. Redlistic estimates of the fluorescence life times by eq. 3 have to be based only on
those low energy features of the absorption spectrum of a species corresponding to electronic
trangitions to the fluorescent state. Therefore, experimental results are also in accord with
current understanding of the electronic structure of the UO,* entity.

The observation of a fluorescence life time different from that of the UO,**(ag) species has
given rise to severa different explanations. In a first approach, the second fluorescence life
time was interpreted due to formation of an exciplex between excited *(UO,H)*, due to
hydrogen abstraction by excited *(UO,*"), and a ground state UO,*" ion, yielding a *(U,O4H)
species with longer life time (Deschaux & Marcantonatos 1979). This interpretation has been
challenged by a different interpretation, assuming reversible crossing between two excited
states *U and *X of the UO,*" ion (Formosinho et al. 1984).
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Current understanding, especialy the recent assessment of solubility limitsin the U(VI)/H,O
system (Meinrath et a. 1996, Meinrath 1998d) indicates that that solutions were considerably
supersaturated under the reported conditions. This finding might explain at least in part the
poor reproducibility of experimental observations reported by Park et a. (1990). The exciplex
theory assumes an analogous behaviour of UO,** to aromatic hydrocarbons, where excimer
formation is well known. However, since an exciplex dissociates immediately after relaxation,
no absorption due to the dimer can be observed. Hence, the exciplex theory is in disagreement
with present study, where the ground state absorption has been found to be readily observable.

The reversible crossing theory primarily requires two identifiable states *U and *X.
However, no such states could be observed. In contrary, further changes in both emission
spectra and fluorescence life time could be observed by extending the range of experimental
investigations. These spectra and life times have been shown to correlate well with the species
(UO,)5(OH),*, (UOy)5(OH)s" and UO,CO5°. These observations are also in close agreement
with the independent study (Park et al. 1990), indicating satisfactory reproducibility in contrast
to the inconsistencies reported on the exciplex theory and the reversible crossing theory.

Nevertheless, the electronically excited states have life times sufficiently long to thermalize
to vibronic equilibrium. Typica equilibration times in agueous solutions a room temperature
arein the order 10 to 10" s. Thus these states are thexi states (thermally equilibrated excited
states) that are known to have a chemistry of their own (Sykora & Sima 1990). Numerous
photochemical reactions induced by excited U(VI) have been reported, however partly with
considerable discrepancy (Balzani et al. 1978). The discrepancies can now be understood as
the result of different U(VI1) species in the respective solutions and illustrates the need of a
detailed understanding of U(VI) solution behaviour in the study of U(VI) photochemical
reactions. Excited U(VI) is readily available in nature, e.g. in sea water with average U(VI)
concentration of 10° M (Bloch 1980) or in rivers and lakes, where the geogenic U(VI)
background is enhanced by phosphate fertilizers (Bloch 1980, Mangini et a. 1979, Veeh et 4.
1974). Thus, a clarification of the fluorescence process of U(VI) is of considerable practical
interest. Here, photooxidation by U(VI) has been proposed e.g. as possible degradation
mechanism of organic substances in sea water or radical generating reactions (Balzani et a.
1978). Hydrolysis and carbonato complexes are prevailing U(VI) species in the natural
aqueous environment (Langmuir 1978, Lopatkina 1964). The supposed importance of U(VI)
in nature has been a main motivation to chose these species for the present studies.
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7. Application in Characterization of Solid-Aqueous Phase Equilibria

In this chapter, the application of spectral informations to solid-aqueous phase equilibria of
uranium(V1) will be reported. Compared to the great number of studies by pH titration
methods reported in literature, solubility studies are scarce. In fig. 7.1a, solubility data from
studies available in literature are given. Included in fig. 7.1 are new solubility data for which
spectral data has been collected. These spectral dataare givenin fig. 7.2.

lg [COZ]
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1 — 1 ]
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. : Meinrath et al. 1996
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Fig. 7.1a : Solubility
data of UO; 2 H,O as

function of pH at p =
0.1 M NaClO,.

Fig. 7.1b : Species dis-
tribution plot of U(VI)
in solubility equilibrium
with UO; - 2 H,O(s) at
25 a p =01 M
(perchlorate medium).
The  species are
caculated on basis of
formation constants Ig
K’'1p = -6.08 £ 0.04, Ig
K'» =-6.14 £ 0.02, Ig
K'ss = -17.14 £ 0.07
and Ig B30 = 9.23 %
0.04 (1s uncertainties)
(Meinrath et al. 1996).

Fig. 7.1b gives relative species concentrations of U(VI) in form of a certain species.
Included are the 1s confidence limits of the respective species, assessed from Bootstrap
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resampling agorithms (Efron & Gong 1983, Stines 1990). The arrows give position of spectral
data, for which deconvolutions are discussed in the sequel.

0,30 ~

pH

——:3.97,0.01,
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Fig. 7.2 : UV-Vis absorption spectra of solutions 5
in equilibrium with UO; "2 H,O at g = 0.1 M s R =

T T
350 400 450 500 550
HCIO,.

wavelength / [nm]

Three factors contribute to the relevance of these eight data points. First, the solubility data
are long term data in the respect that each data point has been equilibrated with the solid phase
for more than three months. Second, the reproducibility of experimental data has been checked
for the data points at pH 4.13 and pH 4.75. As can be seen from the 95% confidence limitsin
pH, the values of pH 4.13; £ 0.01; and 4.15g + 0.01, are not significantly different. For both
rechecked data points the differences observed within the spectral information and the
solubility data is within the confidence limits obtained from both the solubility data as well as
the spectral evaluations. Hence, interpreted spectral datais given in the following figures 7.3 to
7.10. Interpretation is made by the single component spectra of the species UO,*,
(UO,),(OH),* and (UO,)3(OH)s". The UV-Vis spectra are collected in the range pH 4.0 to pH
5.4. The pH range accessible for direct UV-Vis spectroscopic speciation of U(VI) solutionsin
equilibrium with UOs " 2 H,0 is found rather limited, since above pH 5.5 the solubility is lower
than the resolution limit of the UV-Vis spectroscopic method. The term ,resolution limit* is
applied deliberately in given context. Due to the comparatively intense absorption spectrum of
the (UO,)3(OH)s" species, it is well possible to collect spectra above pH 5.5. However, these
spectra are not further interpretable by peak deconvolution due to increased noise. Hence, the
gpectral informations discussed in the sequel are limited to pH values above pH 5.5.
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Spectral deconvolution is made by the sequential SIMPLEX (Nelder & Mead 1967).
Confidence limits of single components and calculated sum spectrum have been evaluated by
canonic analysis (Spendley 1962, Box & Draper 1988). An outline of the procedure in the
open literature been given e.g. by Brumby (1982).

wavelength / [nm]
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Fig. 7.3 : Deconvoluted UV-Vis absorption
350 400 450 500 spectrum of the solution at pH 4.07g + 0.01s.
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Fig. 7.3 gives the spectrum recorded a pH 4.07g £ 0.01s. The spectrum is dominated by the
contribution of the (UO,),(OH).** species. The evaluated concentration ratio of this species
and the UO,*" species is about unity: 2.3:10°: 2.06° 10°. This result is encouraging. However,
as can be seen from the residual plot, residuals are clearly above 5° 10" cm™. This effect is due
to the deviation of fitted sum curve and experimental data in the range 360 nm to 380 nm. This
deviation is systematic, but at present state of analysis, no attempt has been made to omit this
data range during deconvolution procedure. Furthermore, the UO,*" species has an only rather
small relative spectral contribution. Nevertheless, precise assessment of its contribution would
be of outmost interest, because this small contribution carries first a considerable uranium
concentration and second carries information relevant for determination of formation constants
eg. of the (UO,),(OH),” species. Detailed analysis however shows that the spectral
contribution of the UO,*" speciesistoo small to allow concentration assessment with necessary
precision. Because the relative contribution of the free uranyl ion will further decrease with
increasing pH in both its absolute as well as relative contribution due to decrease in total U(V1)
concentration and changes in the species relative contributions. This analysis will be discussed
following the analysis of spectral information. Nevertheless, the three single component spectra
are well able to interpret the observed spectrum.
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Fig. 7.4/5 : Deconvoluted UV-Vis absorption spectrum at pH 4.13; £ 0.01; and pH 4.15¢ +

0.01..

Comparing the absorption spectra at pH 4.13, + 0.01; and 4.15¢ + 0.01, in figs. 7.4/5, the
spectra are found very similar. Nevertheless, both spectra have been taken from two different
vessels with a time difference of about half a year. Compared to fig. 7.3, the relative
contribution of (UQO,)3(OH)s" are increased but the difference is clearly to be seen. The
situation however changes by comparison with fig. 7.6. The spectral contribution of
(UO,),(OH),*" are reduced relative to the increased contribution of (UO,)s(OH)s" species. The
residuals again show the effect of the small difference in the wavelength range 360 nm - 380
nm that adds to the difficulty to assess precise concentration of UO,**. Therefore no formation
constant of (UO,),(OH),*" is given. The formation constants Ig K’ ss are calculated on basis of
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IgK’2, =-6.14 + 0.02 (1s standard deviation) obtained in chapter 4.
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Fig. 7.6 : Deconvoluted UV-Vis spectrum at pH

4.315 + 0.02.
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The observed tendency continues when shifting
pH further. The relative contribution of the
species further increases, while
the difference in the wavelength range 360 nm -
to be systematic and probably a
result of different baseline character of the
spectrometer used in this study compared to the
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Fig. 7.8/9 : Deconvolution of UV-Vis spectraat pH 4.76, £ 0.01, and pH 4.76g = 0.01,.

The uncertainty in assessing precise UO,* concentrations from spectral deconvolution
becomes evident from figs. 7.8/9. While the ratio of the oligomeric speciesis very close in both
spectra, the free uranyl ion concentration varies considerable. Nevertheless, the general
tendency is continued: (UO,),(OH),*" decreases, (UO,)s(OH)s" increases.
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The deviations between experimental curve and fitted sum spectrum seem considerable.
However, it should be noted that maximum absorption of the low energy e ectronic transition
isonly 2°10° cm™. The scatter in the data clearly illustrates that a technical limit has been
reached and spectra at even lower concentrations most probably are not interpretable.

Fig. 7.10 shows that the UO,** species is absent now. The (UO,)s(OH)s" species further
dominates the spectra. Following the spectra given in figs. 7.3 to 7.10, the behaviour to be
expected from numerical modelling of solubility data and validated by time-resolved laser-
induced fluorescence (TRLF) spectroscopy (Kato et a. 1994) is evident. Spectral decon-
volution of the individual spectra results in consistent thermodynamic data of the formation
constant Ig K’ss » -17.00 + 0.50. This data is obtained from the concentration quotients of
both (UO,)(OH),** and (UO,)s(OH)s" and the formation constant Ig K’5, = -6.14 + 0.05. The
derived data includes al contributing stochastic influences. uncertainty in pH measurement,
uncertainty in concentration assessment from canonical analysis and uncertainty from the
parameter |g K’ », used to calculate Ig K’ 35 on the 95% confidence level.

In almost all cases the 95% confidence limit of Ig K’ 35 isin the order + 0.5. Literature data
claims standard deviations in the order + 0.05, however under complete neglect of contributing
uncertainties, e.g. pH measurement or in concentration assessment. The consideration of all
factors contributing to a physical quantity is of outmost importance. Thisis however a problem
that has not yet received the attention it deserves. The use of mean values e.g. in presenting
speciation diagrams or in caculating thermodynamic quantities on basis of error affected
auxiliary constants is wide-spread.

A full assessment of all contributing errors shows that the major importance of this part of
study is the application of single component spectra of relevant U(VI) hydrolysis species in
interpretation of solid-agueous phase equilibria in a quantitative way. As outlined in the first
part of chapter 4, such a possibility has not been available previoudy. As outlined in several
communications (Meinrath et a. 1993, Meinrath & Kimura 1993, Meinrath et a. 1996,
Meinrath 1997), lack of experimental validation of solution composition has been a major
obstacle in understanding both aqueous solution behaviour and photophysical properties of
hexavalent uranium.

The discussion given here is by far phenomenologica. Especialy decisions concerning the
number of significant spectral factors (species) is not as straight forward as it might seem from
foregoing argumentation. A more detailed statistical treatment of the body of numerica
evidence given in this chapter has been presented in (Meinrath 1998d). It has to be noted that
determination of statistical properties from experimental data gets increasingly important. This
importance is partly resulting from quality control requirements and partly from the
requirements of geochemical modelling codes that need an estimate of the uncertainty in each
input parameter to obtain an estimate of the overall uncertainty of the model output (Ekberg et
al. 1996, Ekberg et al. 1997). Modern concepts of uncertainty analysis, e.g. Latin Hypercube
Sampling (Jessen 1975, M%Kay et al. 1979)), require the distribution function of an input
parameter for efficient uncertainty analysis.

70 Freiberg On-line Geoscience Vol. 1 (1998) http:\www.geo.tu-freiberg\fog



8. Assessment of Uncertaintiesin Deter mination of pH

The uncertainty associated with experimental determination of pH is a fundamental para-
meter limiting the precision to which thermodynamic parameters of agqueous solution species
can be obtained. To give an illustrative example in eg. 8.1, the thermodynamic formation
constant Ig Kss of the uranium(VI) hydrolysis species (UO,)3(OH)s*  depends on pH
according to :

Ig K35 =19 {(UO,)5(OH)5"} - 31g{UO,*} + 5 pH (8.1)

The uncertainty in pH enters in the thermodynamic formation constant |g Kz by a factor of
five. The species (UO,)5(OH)s* is an oligomeric hydrolysis species of U(VI) and assumed to
play an important role e.g in the transport of uranium from uranium production installations to
the populations, thus contributing to the health risk of populations in many uranium mining
countries of the world. (Meinrath et al. 1996). Performance of geochemical modelling to
predict these risk potentials in turn depends on an unbiased estimate of over-all uncertainties to
the parameters in the geochemical data bases. Satisfactory thermodynamic description of
aqueous solutions consequently strongly depends on the availability of suitable procedures to
determine pH values with high accuracy. For practical determination of pH, an operationa
definition has been adopted by IUPAC, based on comparison of electromotoric force (EMF) of
a suitable electrode system in the solution of interest with the EMF of the same electrode
system in standard buffer solutions (Galster 1991). Standard buffer solutions are proposed by
the respective IUPAC commissions (Covington et al. 1983). Widely distributed electrode
systems are e.g. glass combination electrodes (Naumann 1994).

Two pH scales are currently proposed by IUPAC: The single standard procedure of the
British Standard Institution (BSI) (Covington 1981) and the so-called 'bracketing procedure’ of
the National Institute of Science and Technology (NIST) (Bates 1981). Both approaches are
considered to be mutually exclusive (Baucke et al. 1993). From view-point of determination of
thermodynamic data, both calibration procedures are found unsatisfactory. BSI procedure
heavily relies on the ideal Nernstian behaviour of the electrode system, which is recently found
guestionable from thermodynamic analysis of the processes responsible for the electrode
respone (Baucke et a. 1993, Baucke 1994a, Baucke 1994b). NIST procedure results in
different pH vaues for a given sample solution depending on the choice of 'bracketing' buffer
standards. More detailed arguments are given in (Naumann et a. 1994, Baucke et al. 1993).

Recently, a multi-point calibration procedure (MPC) has independently been proposed for
approval by IUPAC (Baucke et al. 1993) that has been used by the present author for at least a
decade in the framework of determination of thermodynamic constants for hydrolysis and
carbonate complexation reactions of metal ions in aqueous systems (e.g. (Meinrath et a. 1996,
Meinrath & Takeishi 1993)). The studies not only aim at the determination of accurate mean
values of thermodynamic constants, but aso on a reglistic estimation of confidence limits
associated with evaluated parameters. Therefore, the ability to assess the statistical uncertainty
for each pH determination is an important criterion in selecting a pH calibration procedure.
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Currently however, gross estimation of uncertainties in the determination of pH are more
common than detailed assessment. In table 8.1, some typical comments concerning the uncer-
tainty in an experimentally determined pH is given from selected literatures. Assessment of un-
certainty in determination of pH is often neglected, sometimes given as a genera estimate,
while experimental assessment of uncertainty associated with pH determination is found
scarce. Furthermore, in the evaluation of over-all uncertainties in thermodynamic constants,
contributions from the determination of pH are often neglected, as already discussed in the
preceding chapters.

Table 8.1: uncertainty in pH, summarized from selected references

uncertainty in pH reference comment
+ 0.02 Meinrath & Takeishi 1993 precision
+0.03 Guiffaut 1994
+ 0.03 Stadler 1988 given as "maximum error”
+ 0.02 Bippelmann 1988 6-point calibration
+0.02 Schmitz 1994 "probably larger”
+ 0.02 Harbinson & Davison 1987
+0.025 Metcalf 1987 s of error distribution
from 248 measurements by
7 operators
+ 0.02 Ebel et a. 1978 from error propagation

A practical pH determination may be affected by a series of possible errors, random errors
aswell as bias. Some sources of error are summarized in table 8.2.

As outlined in the following, MPC (multi-point calibration) procedure allows assessment of
the uncertainty associated with an individual pH-measurement by the statistical concepts of
OLS. Practical applicability of an aternative procedure based on a maximum likelihood
approach with some principa advantages will be compared to OLS. Discussion will
concentrate solely on the prediction of the pH value of an unknown sample based on the MPC
procedure. The evaluation of proton activities and concentrations from estimated pH data will
not be discussed here. To demonstrate the relevance of results obtained in this study, the effect
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of uncertainty in pH to the determination of dissociation constants in the CO,/H,O system will
be given in the last section of the discussion.

Table 8.2 : some possible sources of bias and noise affecting a pH-measurement (Galster 1991)

residual liquid junction potential

asymmetry potentials

stirring effects

temperature effects (e.g. temperature gradients over the electrode)
clogging of diaphragms

memory effects

filling height of internal solution

electrical noise (shielding of cables)

Cross contamination

carbonate exchange (in alkaline calibration buffers)

8.1 Methodology

A random selection of 50 out of about 250 pH measurements with 5-point calibration made
during the past half decade is chosen as data set to provide a basis for the following discussion.
These measurements have been done in different laboratories by different caibration standards
and electrodes. In common to all pH measurements is the use of five NIST traceable pH stan-
dard solutions for electrode calibration and sample solutions of 0.1 M perchlorate medium at
pH values in the range of pH 2 - 10 and 25° C. The rationa behind this approach is the
assumption that the data are affected by random influences in a representative manner.
Kolmogorov-Smirnov statistics is applied to compare the empirical distributions with normal
distributions (Massey 1951).

From ordinary linear least square regression (OLS), several confidence regions are
evaluated for the 50 pH measurements: the OLS confidence limit (OLSCL), the joint
parametric uncertainty limit (JPUL) (Schwartz 1980) and the confidence ellipse. From these
confidence regions, 1000 normally distributed random variates are drawn by Monte Carlo
procedures (Rubinstein 1981). Univariate random numbers are generated by a portable random
number generator in Pascal (Press et a. 1989), while random normal variates are generated by
algorithms discussed in (Marsaglia & Tsang 1984, Knuth 1981). Characteristics of the
computing environment are determined by agorithms from the PARANOIA tool (Karpinski
1985). Linear approximations to the Jacobian matrices are computed by an agorithm of Nash
(Nash & Walker-Smith 1987).
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8.2 Evaluation Procedure
8.2.1 Ordinary Linear Least Squares Regression

In MPC, an electrode system is calibrated against severa pH standard solutions and the mV
readings are transferred into a calibration line by a suitable regression technique, where e.g.
ordinary least squares (OLS) regression has been proposed (Naumann et a. 1994). From
Nernst Law, alinear relationship of the form (8.2) is expected

mV =a +R3* pH (8.2

To illustrate the procedure, a numerical exampleis given in table 8.3.

Table 8.3 : set of typical pH calibration data

pH of standard mV reading OLSresiduals
[mV] [mV]
4.01 182.3 +2.2
4.66 140.5 -14
7.00 2.8 -1.7
9.01 -1135 +0.1
10.01 -171.1 +1.0
OLS parameters : dopeb : -58.71 + 0.36;
intercept a : 415.56 + 2.684
uncertainties:  confidence ellipse: + 0.03,
OLSCL : + 0.06,
JPUL : +0.09,
eq. 8.8 + 0.034
maximum likelihood parameters : dopeb : -58.61 + 0.376
intercept a : 414.77 + 2.691

By unavoidable measurement errors, uncertainty creeps into the experimental determination of
dope b and intercept a of eq. 8.2. Thus, the calibration data has to be interpreted by a model

yi=a+bx+g;(i=1..n) (8.3)
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where x; is the pH of the i-th standard, y; the corresponding mV reading of the pH meter and g
represents the i-th residual. The residuals ¢ are considered as a estimates for the true but
unknown errors g,

Due to random errors, the estimated parameters a and b will not be equal to the true but
unknown parameters. If the errors g are independently and identically distributed with a mean
of zero, it is possible to indicate with some specific probability in what region of the parameter
space (a,b) the true parameters might reasonably be expected. The standard deviations for
dope b and intercept a of the regression line are given by eg. 8.4 - 8.6 (Haswell 1992):

Se
s(b) =———— (8.4)
V& (xi- X)°
1 X°
s(a)—se\/ﬁ+m (8.5)
Szzéyiz- aayi- ba xy (8.6)
¢ n-2

Standard deviations are transformed to ordinary least squares confidence limits (OLSCL) by
multiplication with Student's t,, 5, (‘Student’ 1908) where n gives the number of data points,
P represents the number of simultaneously estimated parameters and t gives the desired
confidence level. The standard deviations s(a) and s(b) are commonly reported parameters
that are understood often as a square 68% confidence region of in the parameter space (a,b).
The true confidence region for a linear model function is dliptical in (a,b) (Donaldson &
Schnabel 1987) and described for the present linear model by eq. 8.7 (Bates & Watts 1988):

2F,, 5, xS =n(a- @)’ +28 xi(b- b)(a- @) +& x*(b- b)? (8.7)
F : Fisher'scritical variance ratio for n data points, P parameters and confidence level t

To show the distribution of the 50 calibrations, confidence ellipses of the 50 measurements
in (a,b) are given in fig. 8.1. These ellipses are calculated by eg. 8.7 and enclose the 95%
confidence region in (a,b) (mean centred for a). The center point of the ellipse represents the
mean (0,b), estimated from the respective regression analysis. The ellipse encloses the region
(a,b), where the true parameters might be found with 95% probability. It is obvious from fig.
8.1 that slope 3 and intercept a are strongly correlated: High slopes (3 favour low intercepts a
and vice versa. Provided the electrode system behaves idedlly, it is straightforward to identify
the dope B with the theoretical Nernstian slope of -59.16 mV pH-1. In case of glass electrodes
however, idea behaviour may not be expected and the theoretical slope is commonly found
less than expected for an ideal electrode system (Baucke 1994). In the present study, too, the
confidence €ellipses are not centred at the theoretical Nernst slope of -59.16 mV pH-1. In all
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cases the slopes are above -59.16 mV pH-1. This observation agrees well with the observations
reported by previous authors (Baucke 1994).

Fig. 81 : 95% confidence
oSS dlipses of 50 randomly selected
-56,0 - 5-point glass eectrode calibra-
56,5 |- tions using NIST traceable buffer
57 0 I standards at 25 °C (mean centred

L for intercept a).
& 5751
S I
> -580f
E L
— -585
S I
o -59,0 -
o -
v 595
-60,0 |
-60,5 -
61,0 |
| 1 | 1 | 1 | 1 |

-15  -10 -5 0 5 10 15

s(@/[mV]

A first estimate of the uncertainty associated with a pH value can be obtained directly from
the least squares line by eq. 8.8 (Bates & Watts 1988) :

)2
Syt = tn-Pt >€e\/1+£+(°XO—X)_ (88)
’ n g - x

Eq. 8.8 describes a confidence band around the OLS line. The confidence band is bone-shaped
with aminimum at X, = X with X being the arithmetic mean of the abscissa data from which the
OLSlineisderived. The statistical parameters reported in following have been obtained for pH
= X. The parameter t,p,; represents Student's t for n-P degrees of freedom and the desired
confidence leve t. Further estimates of uncertainties are obtained by Monte Carlo simulations,
where normal variate random selections are collected from the respective confidence regionsin
(a,b). Examples are shown in fig. 8.2a,b for the data given in table 8.3.
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When reporting standard deviations, it isimplicitly assumed that about 68% of the randomly
drawn samples (=simulated measurements) will result in parameters (a,b) within the given
limit. For multi-parameter models with mutual correlation of parameters as shown in fig. 8.1
for the parameters (a,b), this assumption is known to be not valid (Donaldson & Schnabel
1987, Schwartz 1980). Some pairs of (a,b) faling within the 95% confidence elipse are not
included into the sguare 95% OLSCL obtained from the standard deviations. Taking the data
given in fig. 8.2 as a representative example, the square 95% OLSCL (cf. table 8.3) encloses
only 88% of the 1000 randomly drawn samples from the confidence ellipse. Hence, the
coverage, understood as the ratio of observations actualy found within the confidence limit
and the theoretically expected number of observations is only about 90% from fig. 8.2.
Coverages as low as 80% are found in the present study. The obvious reason for these low
coverages are the differences between the shape of confidence areas described by the
confidence ellipse and the OLSCL. Fig. 8.2b explains further, that a considerable amount of
samples drawn from the OLSCL are outside the parameter space enclosed by the confidence

77 Freiberg On-line Geoscience Vol. 1 (1998) http:\www.geo.tu-freiberg\fog



ellipse. Therefore, mean pH values and standard deviations obtained by Monte Carlo
smulations differ for both confidence regions.

Since the statistical uncertainties can not convey the complete picture of the uncertaintiesin
determination of a and b, the use of joint parametric uncertainty limits (JPUL) has been

proposed for linear models (Schwartz 1980, Roy & Bose 1953). The confidence interval of i-th
parameter P, isgiven by eg. 8.9

JPUL(P) = 2,/PF,,.p. (P), (8.9)

where P gives the total number of parameters simultaneously determined and s(P.) represents
the ordinary standard deviation of the parameter P,. In fig. 8.2, the JPUL for 95% confidence
are indicated. The JPUL is designed to form a rectangle enclosing the confidence ellipse by
tangents. The actually observed coverage is always > 95% and therefore, JPUL are considered
to be conservative (Roy & Bose 1953).

1,0 ,—‘~— Fig. 8.3 : Comparison the empirica
] ® :sampleddata ,,"’ distribution of uncertainties in pH
]~ :normaldistribution obtained from 1000 Monte Carlo
0,87 smulations from the 50 confidence
= ellipses with a norma distribution.
=
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uncertainty in pH

The cumulative distribution of uncertainties obtained for the 50 randomly selected pH mea-
surements by resampling from the confidence ellipse is compared to a normal distribution in
fig. 8.3. The fitting criteria is a minimization of Kolmogorov-Smirnov's D (Massey 1951)
between empirical and normal distribution. The analysis results in a 0.2% probability that the
50 standard deviations are actually drawn from a normal distribution with mean 0.037 and a
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standard deviation of £0.006. This probability seems negligible. On the other hand, there is no
reason to expect that the electrode parameters of several different electrodes obtained during a
five year period are truly Gaussian distributed. Truly homoscedastic data are rather rarely
found from experimental studies. Furthermore, the low probability is mainly caused by
deviations in the tails of the distribution. This part is strongly affected by censoring (preferring
calibrations with small residuals) and systematic errors during the measurement process. The
main systematic measurement error is found to be due to use of carbonate buffers at about pH
10. These buffers are found rather unstable. Without detailed statistical analysis, these most
probably erroneous measurements would probably have been accepted into the evaluation of
thermodynamic data. After spotting these invaid buffer standards by applying statistical
analysis, the buffers were replaced, resulting in improved confidence estimates. The 'spoiled'
measurements have nevertheless not been excluded from the present data set to emphasize the
need of a detailed statistical assessment of each individual pH measurement.

O ’ .0 ; . ;
R Fig. 8.4 . Comparison of uncer-
" tainties obtained from empirical
d

distributions of 1000 normally
distributed Monte Carlo simulations
from the confidence dlipses,
OLSCL and JPUL regions. The
distribution of uncertainties calcu-
lated by eg. 8.8 isincluded.

cumulative probability

confidence ellipse
© standard deviation
i: JPUL

» confidence band

0,02 0,04 006 008 0,10
uncertainty in pH

Fig. 8.4 compares the cumulative distributions of uncertainties obtained from the 50
measurements by sampling from the a) confidence €ellipse, b) ordinary standard deviations, c)
JPUL and d) uncertainties calculated directly from the regression parameters by eg. 8.8. While
sampling from the ordinary and JPU intervals results in significantly higher uncertainties, samp-
ling from the confidence ellipse is equivalent with direct calculation by eq. 8.8. If a rough
estimation on the precision of the determination of pH by the MPC procedure should be given
as arule of thumb, +0.03 pH units would certainly not a too arbitrary choice. This conclusion
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may be e.g. compared to results from a round-robin pH study. Seven operators measured 485
pH values of 5.00 + 0.05 10> M H,SO, solutions using nine different ROSS-type electrodes
(Metcalf 1987). The histogram of the 485 (binned) measurements shows considerable
skewness toward lower pH, nevertheless a pH of 4.06 + 0.05 (2s) is reported. Calibration of
electrode systems was made according to the 'bracketing procedure’ using standard solutions at
pH 7.00 and pH 4.00. Ebel (1978) gave a detailed statistical analysis of the pH measurement
using error propagation. Reported uncertainties (1s) are of the orders +0.02 (6-point
calibrations). Schmitz (1994) concluded that the uncertainty of pH in diluted solutions is >0.02
pH units. The results from the present study do not offer discrepant conclusions. However, it is
to emphasize that the intention of the present discussion is not to derive a universally valid
estimate but to appraise several suitable procedures for assessment of uncertainties.

8.2.2 Maximum Likelihood Approach

There are several arguments to question OLS regression for the pH calibration/prediction
procedure. First, currently available commercia equipment for determination of pH is capable
to measure the EMF of a given solution within £0.1 mV, while pH values of standard solutions
are given within £+ 0.02 pH units. This implies, based on the data in table 8.3, that the
uncertainty in the pH buffer standard transfers into an uncertainty of >1 mV, within the order
of magnitude reported for residua liquid junction potentials (Galster 1991, Bates 1981).
Hence, the assumption that the abscissa values are error-free while all experimental error is
concentrated in the ordinate values -a fundamental assumption in regression (Donaldson &
Schnabel 1987)- introduces considerable bias. Second, weighted regression maintains this pri-
mary assumption of ordinary least square regression and is only helpful, if the specific weights
for each calibration point are known (Ripley & Thompson 1987). For equal weights, weighted
regression gives the same results as ordinary least squares regression. Third, the calibra
tion/prediction procedure is biased, too, because calibration is based on the assumption that the
abscissa data is error-free. In the prediction step however, the ordinate value (in case of pH
measurement the mV reading in the sample solution) is assumed to be error-free. This principal
difference is of margina importance in case of laboratory pH measurement in well-
characterized solutions under controlled conditions, but becomes of importance e.g. in field
measurement of pH for hydrogeological investigations. A statistical approach that avoids these
weaknesses is the maximum likelihood approach (Bates & Watts 1988). In the following, the
maximum likelihood approach is compared to the OL S approach.

In the maximum likelihood approach, it is assumed that the calibration data represent a
random realization of the distribution pH = pHy, + error and mV = mV, . + error. Thus, both
abscissa and ordinate data are affected by random errors - a mgor difference to the OLS
approach commonly selected. The parameters requested are those that maximize the
probability to obtain the experimentally observed data under the constraint, that both abscissa
and ordinate data are affected by error. The least squares condition is given by eqg. 8.10:
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L=- é (pHobs - thrue)2 / Ki - %é (mVObs - rT‘]Vtrue)2 /i (810)

N | =

where k; and | ; give the variances of in pH and the measured potentias, resp. and the
subscripts obs. and true designate experimentally observed and true but unknown data points,
resp. If informations on variances are not available, the function to minimize is eq. 8.11 (Ripley
& Thompson 1987):

L=- %é (PHobs - pHurue)? - %é (MVobs - MVirue)? (8.11)

The least squares line therefore is given by the minimum of the perpendicular distances
between maximum likelihood least square line and the data points of abscissa and ordinate.
Following this procedure, the least squares line is independent whether pH or mV readings are
taken as abscissa data. On the other hand, closed formulas for the confidence region,
comparable to eq. 8.7, are not available for the likelihood method (Donaldson & Schnabel
1987). Approximate confidence regions in the parameter space (a,b) can be obtained from the
diagonal elements of the variance-covariance matrix of (a,b) by eq. 8.12:

V=s*(J(Q)' Q)" (812

where s is the residual sum of squares and J(Q) is the Jacobian matrix in the minimum of the
parameter space Q = (a,b). Among several possible approximations to the variance-covari-
ance matrix V, eg. 8.12 is report to be the most robust variant (Donaldson & Schnabel 1987).
When calculating the Jacobian matrix V for the OLS regression line, numerically values
identical with the standard deviations in (a, b) according to egs. 8.4/5 are obtained. By
evaluating eg. 8.12 the maximum likelihood least squares line will show whether a significant
improvement in the accuracy of parameters (a,b) can be obtained.

Using the likelihood approach, where the residuals are given by the perpendicular distances
between experimental data and least squares line, smilar standard deviations are obtained com-
pared to the OL S regression method, as shown in table 8.3. For the time being, it is concluded
that for laboratory determinations the lack of simple and efficient means to calculate
confidence ellipses and related statistical parameters outweighs the principal advantage of
unbiasedness in the maximum likelihood approach.

8.3 Application Example
CO, dissolves in agueous solutions under partial dissociation into HCOs and COs” ions.
The concentrations of these ions can be determined by potentiometric titration. From such an

experiment, the data pairs given in Table IV in 0.1 M perchlorate medium at 25 °C and under
an nitrogen/CO,(1.0%) atmosphere have been obtained. Interpreting these data by eg. 8.13
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Ig[COs"] =IgK +1g°CO, + 2 pH (8.13)

without taking into account the uncertainty in pH, Ig K = -17.62 £ 0.07 is obtained. By
allowing the experimentally determined pH values to float within the specified uncertainties
during 1000 resampling cycles however, a parameter Ig K =-17.63 + 0.18 is obtained. In these
studies, pH values are randomly drawn from a normal variate with mean value at the given pH
and deviation s, included in table 8.4 and calculated by eq. 8.8. The dope b is fixed at the
theoretical dope of 2. The uncertainty contributed by pH nearly triples the over-all uncertainty
in the parameter Ig K. This simple example shows that the uncertainty in the determination of
thermodynamic constants for pH dependent species must be considered as biased if the error
contributions from the pH determination to the over-all uncertainty are neglected.

Table 8.4 : experimental carbonate concentrations as a function of pH (PCO, = 1%)

lg [CO42] pH uncertainty s
-4.18 7.63 +0.02,
-4.00 7.71 + 0.03,
-3.64 7.93 +0.03,
-3.33 8.10 + 0.03,
-3.17 8.26 + 0.02,
-2.97 8.36 +0.04,
-2.34 8.43 + 0.034
-2.27 8.60 +0.03,
-1.87 8.75 +0.03,

The discussion focused on a comparison of different suitable procedures to assign aredlistic
estimate to the uncertainty of pH, based on the MPC procedure. The theoretical relationship
between observed pH and pH meter readings is a linear function and thus, the correct eliptical
confidence region in the parameter space (a,b) can be calculated from linear regression. A
comparison of Monte Carlo simulations from the confidence ellipse with the OLS predictor eq.
8.7 as shown that an estimate can be directly obtained from eg. 8.8. A maximum likelihood
approach is found to be of little practical advantage despite its theoretical merit of
unbiasedness.

Assessment of uncertainty in the determination of an individual pH value is an essentia task
in many fields of science. However, the procedures proposed by IUPAC for evaluation of pH
do not alow for detailed assessment of this uncertainty, because calibration of the electrode
system against only one and two, resp. standard pH solutions is recommended. The obser-
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vation that glass electrodes tend to have effective slopes considerably lower than the theore-
tical Nernstian slope of -59.16 mV pH-1 at 25 °C is confirmed. This observation indicates that
use of BSI calibration procedure, where pH are estimated after calibration against one buffer
standard by means of the theoretical Nernstian slope, might introduce systematic errors in the
evauation of thermodynamic constants. The advantage of MPC to allow detailed assessment
of respective uncertainties is demonstrated on basis of 50 randomly selected five-point calibra-
tions by Monte Carlo simulation. Calibration of the electrode against six standard buffer soluti-
ons will improve the precision of the MPC procedure, since F; 3 g5 = 9.554, while F; 4 9 g5 =

6.945. The size of the confidence ellipse (cf. eq. 8.7) will be reduced further.

The discussion is directed to the determination of thermodynamic constants for agueous
solution species. However, due to the general importance of pH, related questions occur as
well in other areas, where thermodynamic interpretation of the measured pH values is of
central interest. As outlined by Bates (1981), "only in the study of chemical equilibriumisit ne-
cessary to inquire about the precise nature of the quantity (pH) measured”. Hence, determina-
tion of thermodynamic parameters is one of the areas where the given discussion addresses a
relevant subject. In other areas, e.g. process control in commerce and industry, where pH is
well established as an useful parameter, reproducibility is emphasized over thermodynamic
interpretation (Galster 1991, Bates 1981). To illustrate the influence of uncertainty in determi-
nation of pH on the over-al uncertainty of thermodynamic constants in pH dependent
reactions, a simple application example is given.

8.4 Statistical Calibration - A Comment

Chemists in many cases are satisfied to determine parameters of a least-square straight line
when cdlibrating equipment. Often, there is no awareness of different approaches to
calibration; e.g. classicd, inverse (Krutchkoff 1967), bivariate (Riu & Rius 1996), orthogonal
(Danzer et al. 1995) or even robust regression (Danzer 1989). Hence, few consideration is
often devoted to the assessment of probable uncertainties in the determined quantities. As a
matter of fact, each experimental datum is affected by errors, both bias and stochastic errors.
The ignorance of these unavoidable contributions may affect the results to a degree that makes
the forwarded conclusions void. On the other hand, selection of a suitable model for straight-
line calibration may become a delicate task, too. In the present discussion, the pH electrode is
caibrated by classical least-square regression. A model y; = a+ b x; + g isused, where g isa
stochastic homoscedastic error with mean zero and standard deviation s. However, it may be
argued that a model y; = a+ b x; + g + g should be more adequate, where g is a -basically
non-stochastic- liquid junction potential. There is no reason to reject this argument. But fig.
8.3 clearly points out the strong stochastic nature of measurement residuals in pH calibration.
There is no way to argue about the deviations between the experimental distribution curve and
the cumulative Normal distribution. In nature, both normal distributions and homoscedatic
errors are very rare -especialy if the data are collected during a nearly ten-year-period.
Nevertheless, the calibration of apH e ectrode remains a field worth for further activity.
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9. Uranium(V1) Spectroscopic Speciation

Generally, fundamental science does not reflect directly on practical application of research
results. However, an actinide chemist should be prepared to answer an inquiry. After al,
actinide science is closely related to questions of centra political interest. However, in the
present case, the answer is ‘learning’. Actinides with their comparatively intense UV-Vis
spectra, their variety of redox states and their radioactivity make them valuable tools for
investigating natural systems. E.g. isotope hydrogeology is an essential tool to understand
global cycles, geologic transformation as well as fundamental processes like sorption. Uranium,
eg. via its ®Y?®U disequilibria, has added a tremendous amount of knowledge to our
understanding of natural systems.

Currently, the remediation of areas contaminated by mining -not only uranium mining- is a
guestion of major importance in many countries of this world, e.g. Czech Republic, South
Africa, Brazil or Canada. Therefore, the following pages are devoted to an assessment of
prospects and limitations of uranium(V1) spectroscopic studiesin natural aguatic systems.

Because of its nuclear applications, an enormous amount of scientific work was directed to
uranium after discovery of nuclear fission in 1939. The results of spectroscopic studies on
U(VI) done during the Manhattan Project have been summarized by Rabinovitch and Belford
in 1964. As these authors stated: "Y et many basic experimental questions remain unsettled and
a theory of the uranyl ion explaining its spectroscopic behaviour is only rudimentary”. The
lasting controversia discussion of the electronic structure of the UO,2* entity has been settled
only recently (Denning 1992). Thus, a more reliable basis for interpretation of spectroscopic
studies has been reached.

Owing to the low solubility and high sorption tendency of U(1V), uranium is dissolved in
aqueous systems mainly in the hexavaent form (Williams 1994). Uranium(V) is stable only in a
limited pH/E range and has a high tendency for disproportionation (Selbin & Ortego 1969). It
isnot likely to play arole in natural systems.

Current interest in the physico-chemical properties of the uranyl(V1) entity UO,2* originates
mainly from the fact that uranium is a major constituent of highly radioactive nuclear waste as
well as the need to remediate areas contaminated by uranium mining after World War 11.
Therefore, spectroscopic properties of U(VI) are of considerable interest for speciation of
uranium e.g. in natural systems contaminated by uranium mining. Speciation in the present
context aims at the characterization of specific forms of a metal ion in agueous solution.
Specific form does not only refer to the oxidation state, but on revealing the specific
environment of ametal ion, e.g. its specific structure in solution. A broader outline of different
aspects of speciation is given elsewhere (Frimmel & Gremm 1994).

In the following, spectroscopic properties of hexavalent uranium will be discussed with res-
pect to its potentia application in site-specific characterization of U(VI) in areas contaminated
by uranium mining. Some emphasis is put on the correlation between absorption and emission
spectra of U(VI) solution species.
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9.1 Spectroscopic Speciation by UV-Vis Spectr oscopy

Uncertainties and mutually exclusive interpretations concerning the electronic structure and
the multiplicity of the electronic ground state have hampered application of spectroscopic
techniques to speciation of uranium(V1) in agqueous solutions. Noted exceptions are e.g. the
studies of Bartusek and Sommer (1964) as well as Rush and Johnson (1963). Both studies
were directed to the hydrolysis of the uranyl(VI1) ion. Hydrolysis is a most fundamental
reaction of a metal ion in aqueous solutions. For actinides like uranium(VI), hydrolysis and
coordination by carbonate have been recognized as predominant geochemica reactions in
natural agueous systems (Langmuir 1978).

Fig. 9.1 : UV-Vis absorption
[U]neas = 1:22 x 10° mol I spectrum of U(VI) at pH 4.48; +
0,006 [U],e = (1.23 £ 0.02,) x 10 mol I 0.024 under a CO, atmosphere in
solid/agueous phase equilibrium
PCO, = 100 kPa with  UO,CO4(9) (I\_/Iei_nrath
‘_E . 1997b). The spectrum is inter-
o PH 4.48, £ 0.02, preted by the single component
~ 0,004+ : experimental spectra of UO,*, UO,CO;° and
g : calculated (UOz)z(OH)22+.
= oo U0y
S ——:U0,CO,
2 : (UO,),(OH)2*
T 0,002
0,000_ NeesFeniimariito S e o,
350 400 450 500

wavelength / [nm]

In Fig. 9.1, an application example is given to illustrate the principle and potential of
spectroscopic speciation for the characterization of the state of a uranyl(V1) speciesin aqueous
solution. The spectrum is recorded from a solution in solid/agueous phase equilibrium with
UO,CO4(s) under a CO, atmosphere (Meinrath 1997b). By spectroscopic speciation, not only
a total uranium concentration is obtained, but detailed information on the physicochemica
state in solution.

UV-Vis spectroscopy with afew exceptions most probably might be not sensitive enough to
detect U(VI) concentrations even in areas contaminated by uranium mining (Helling et al.
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1997). The single component spectra in figs. 4.7 and 4.9 however will be helpful in verifying
thermodynamic data bases used for geochemical modelling of uranium e.g. in the assessment of
remediation strategies in former uranium mining areas. Furthermore, these spectra will be
helpful in development of TRLFS towards quantitative analysis of hydrolyzed U(VI) solutions.

9.2 Fluor escence Spectroscopy of Uranium(V1)

Fluorescence of uranium(V1) in salts and solutions is studied over more than 150 years. As
early as 1853, Stokes reported the "mirror-image” relationship between absorption spectrum
and emission spectrum while studying uranyl nitrate crystals (Stokes 1852, 1853). By using
pulsed laser excitation and time resolution of the emission process, there is a potentia for
gpeciation of U(VI) at the nanomol level (Kato et al. 1994). Advanced spectroscopic
techniques like time-resolved laser-induced fluorescence spectroscopy are able to routinely
collect emission spectra and determine lifetimes. The potential as well asits limiting factors for
application of TRLFS will be focused on in the sequel.

9.2.1 Application of TRLFS to Spectroscopic Speciation

Despite these promising features, fluorescence spectroscopy has not been used for spectro-
scopic speciation of uranium(V1) solutions until recently. Application of fluorescence spectro-
scopy has been hampered by inconsistent interpretation of fluorescence lifetimes observed in
solutions with increasing pH. While it has been well known that the UO,2* ;, species has a
fluorescence lifetime of about 1 psin acid solution <pH 2, a second lifetime contribution had
been reported to appear on lowering the pH value to about pH 3 (Matsushima 1972). This
second lifetime of about 2.5 ps has been interpreted due to different fundamental processes,
eg. intersystem crossing (Formosinho et a. 1984) or exciplex formation of H*(UO,),**
(Marcantonatos 1980) (*(): electronically excited).

An interpretation of the second lifetime due to formation of UO,OH™* species was suggested
by Zheng et a. (1986), thus indicating the potential of applying time-resolved |aser-induced
fluorescence spectroscopy (TRLFS) to speciation of uranium(VI). By correlating UV-Vis
spectroscopic evidence on formation of the (UO,),(OH).** species with TRLFS, the speciation
capabilities of TRLFS have been demonstrated and the occurrence of a second lifetime has
been attributed to formation of the (UO,),(OH),2* species (Meinrath et al. 1993). Meanwhile,
TRLFS is extended successfully to a variety of pH-dependent U(V1) systems (Kato et al. 1994,
Bernhard et a. 1996, Couston et al. 1995, Brendler et al. 1996).
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To illustrate the fundamental
relationship between absorption and
emission spectra, a schematic illu-
stration of a molecular fluorescence 21
process is given in fig. 9.2. Energy .|
transfer between an electronic
ground state 9n, with vibrationa
quantum levels n and two different
excited levels In, and 2n,, is shown,
each with n vibrationa levels. Upon in
light absorption, an electron is v
excited from the ground state level |
to excited levels. This process is
indicated by top arrows. Under
moderate temperatures of 298 K, in
thermal equilibrium usualy only the
vibrational ground levels (n = 0)
only are occupied. As a rough rule,
first excited vibrationa levels at
temperatures <300 K are occupied
usualy with a few percent only,
while occupation of higher excited
vibrational levels can be neglected.

orRrNWA 5

orRrNWA 5

excitation
uoISSIWS

Excitation from ground state to g ! ]
one of the excited states is governed
by the Franck-Condon principle
(Rabinovitch & Belford 1964) with
the consequence that molecules in
non-equilibrium  vibrational levels
(n>0) are formed in the excited
electronic state (Sykora & Sima
1990). Hence, the excited molecule
strongly vibrates. This vibrational energy however is quickly dissipated by collisons with
neighboring molecules. Collision rates in agueous solutions at room temperatures occur at
about 10 s* (Porter 1983). A thermally equilibrated excited state is formed with excited
electrons occupying the vibrational ground state of the excited electronic states: 1ny and 2n,
resp. The electronic relaxation of excited state 2ny may occur by either direct relaxation to the
electronic ground state or via the first excited state In. Some transitions to and from the state
2n are considered by dashed linesin fig. 9.2. Experimental work has shown that uranyl (V1) that
is excited to higher states than 1n relaxes to the first excited state on a time scale short
compared to 10 ns (Sugitani et al. 1980). Occupation of the fluorescent first excited state 1n
may be more efficient via higher excited states than via direct excitation (Sykora & Sima
1990). In case of the UO,**(ag) ion, the direct excitation of the fluorescent state by absorption

oRrNWA 5

Fig. 9.2 : Jablonski diagram illustrating fundamen-
tal relationship between absorption and emission
spectrum
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of light in the range 500 nm to 370 nm, is a very weak process compared to the intense
absorption in the UV range, as shown in fig. 3.2. Hence, excitation in the UV range is often
preferred (Kato et al. 1994, Couston et al. 1995, Bernhard et a. 1996) in practical TRLFS
studies.

Taking the case of the UO,2* group, state 2n in the schematic representation of fig. 9.2 cor-
responds to an intense UV absorption, while state 1n represents the symmetry forbidden low-
lying absorption in the visible range. Due to symmetry effect, relaxation rate from 1n to n
state is forbidden in the same way asis direct excitation. This relationship qualitatively explains
the long lifetime of the emission process in uranyl(VI) compounds. Since the lifetime of the
fluorescent state is in the pis range, a time scale long against collision frequency in solution,
relaxation takes place from the vibrational ground state (n = 0) of the fluorescent state n, too.

Like the absorption process, the emission process is governed by the Franck-Condon
principle (Porter 1983). Therefore, the °ny <- 'n relaxation is not the only transition observed
in the emission spectrum, even not necessarily the predominant transition. The relaxation
processes from 'n to °n, states are indicated by solid bottom arrows. As indicated by fig. 9.2,
energy of maximum emission will usually be found at longer wavelength than the maximum of
absorption. Furthermore, the emission spectrum will occur at the long-wavelength side of the
absorption spectrum, provided the absorption and emission bands correspond to the same
transition and the species does not change itself between excitation and emission, e.g. by ligand
exchange. The only transition energy that is common to both absorption and emission
spectrum corresponds to the transition between the vibrational ground states of the ground and
first excited state. These transitions are given as bold lines. Thus, the spectral correlations
given in figs. 6.2 - 6.4 validate the consistency of spectral data despite the fact that spectral
informations have been collected during the past five years by different equipment in different
laboratories and evaluated by in part highly sophisticated data treatment techniques.

Concerning application of TRLFS to speciation of uranium(VI) in environmenta systems,
these features are most favourable. In natural systems, the fluorescence of the UO,2* entity can
be readily distinguished from organic fluorescence due to its longer lifetime. Naturally
occurring organic materials have fluorescence lifetimes in the nanosecond range, while the
UO,*" entity has fluorescence lifetimes in the microsecond range. Other inorganic fluorescent
ions, e.g. Eu3* or Th3* will occur in nature only under exceptional conditions at sufficient con-
centration levels.

9.2.2 Quenching

The advantageous features of U(VI) TRLFS speciation discussed above are opposed by
interfering effects. The fluorescence emission process illustrated in fig. 9.2 has to compete
with concurrent processes. These processes are e.g. radiationless decay or quench. It should
be noted that uranium(V1) ion in its electronically excited state is expected to be a strong
oxidizing agent. As outlined elsewhere in more detail (Balzani et a. 1978), the energy of the
excited electron in the UO,2* entity corresponds to a redox potential of about 2.6 V.
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Therefore it is not surprising that a series of quenching reactions with organic substances, e.g.
alcohols (Hill et a. 1974) and aromatic hydrocarbons (Ahmed et al. 1975) has been reported.
Formation of benzil from benzaldehyde (Matsushima et a. 1976) and biacetyl from
acetaldehyde (Sakuraba & Matsushima 1972) are described in solutions containing * (UO,2%).
In al these cases, the energy transferred to the system by exciting the uranyl(V1) ions induces
chemical reactions that otherwise would not take place. Similar potential quenchers as the
organic substances mentioned above are expected to exist in environmental samples and thus
may interfere in the applicability of TRLFS to environmental samples.

Inorganic ions like Fe3* and CI- (Matsushima et al. 1974, Y okoyama et al. 1976) are able to
either abstract the excited electron from the uranyl entity or transfer an electron to
electronically excited *(U(VI)) thus reducing the emission yield from the excited uranyl(V1)
species. Quench by Br- and |- is found more efficient than quench by ClI- (Y okoyama et al.
1976). In environmental systems however, chloride is more abundant than the heavier halogen
ions. In case of Eu*, quench due to electron transfer from the excited uranyl(V1) to Eu**
could be demonstrated by selectively exciting the uranyl entity, while observing the emission
spectrum of the Eu3* ion (Matsushima et al. 1974, Kropp 1967).

A further possible quenching mechanism is formation of carbonate radicals COz°- (°:
unpaired electron) (Balzani et al. 1978). Evidence for formation of this radical species upon
excitation of a solution containing 2 - 102 M U(VI) and 0.01 M NaHCO; by flash light
photolysis has been discussed. It has to be noted that fluorescence of higher carbonate species
UO,(COs),” and UO,(COs)s* could not be observed (Kato et al. 1994, Meinrath et a. 1993)
due the strongly decreasing fluorescence yields at free carbonate concentrations above 107 M.
Since such carbonate concentrations must be expected to occur widely in environmental
systems, further limitations concerning the application of TRLFS to direct speciation of U(VI)
in natural samples are not to be excluded. Here, further studies are necessary and will promise
further interesting insight. More detailed reviews concerning the photochemistry of uranyl(VI)
are available e.g. (Sykora& Sima 1990, Gusten 1983).

9.3 Speciation Needsin Natural Samples

To illustrate speciation needs in field samples, stability fields of relevant U(VI) hydrolysis
and carbonato species are given in the U(VI)-pH diagram fig. 9.3. Conditions for which fig. 6
holds are 0.03% CO, partial pressure, an ionic strength of 0. 1 M at 25 °C and neglectance of
uranate solid phases. The stability fields indicate > 5% relative species amount. It is evident
that oligomeric species, despite the great consideration devoted to them during the past half
century, are stable only in a quite limited U(VI)-pH range close to the saturation limit of the
solid phase.
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Fig. 9.3 : Stability fields
of U(VI) species in
aqueous solution with
relative  abundance >
5%. As can be seen, the
stability field of inten-
svely investigated oli-
gomernic hydrolysis
products is quite limited
to a region close to the
stability field of solid
phase UO; " 2 H,0. For-
mation of solid uranate
is suppressed by assu-
ming alow Na" concen-
tration. The diagram is
caculated from the
thermodynamic data dis-
cussed in this work.

The hydrated UO,*" species has the by far largest stability area. At pH > 7, the stability field
of UO,(COs)s* starts. Under conditions given in fig. 9.3, a pH value larger than 8 can not be
attained due to restriction in ionic strength. It is however evident that the tricarbonato complex
isthe limiting U(VI) carbonato species for steric reasons (Meinrath 1996).

Stability fields of monomeric species UO,OH*, UO,CO;s° and UO,(CO3),” are found at
relative amounts >5 % within narrow pH limits. The stability fields are quite limited to about
one pH unit only. Formation of carbonato species starts aready at pH 5.3, strikingly illu-
strating the high affinity of U(VI) towards carbonate.

It should be noted that fig. 9.3 is based on the mean values of respective formation
constants only. The intention of fig. 9.3 to provide a genera overview on conditions and
species in field samples contaminated by uranium(V1), comparable to the well-known Pourbaix
diagrams (Brookins 1990). Included into fig. 9.3 are experimentaly determined U(VI)-pH
pairs (m) from field samples obtained from a uranium mill tailing (Butters 1994). It should be
principally possible to speciate U(V1) directly in the field samples at pH <7 where the U(VI)
fluorescence is not affected by quenching from carbonate (Kato et a. 1994). However, the
fluorescence intensities of U(VI) species dominating under these conditions are quite low and
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the life times do not seem to be very characterigtic. The life time of the UO,OH" species e.g. is
given with t;; = 10 ps (Bernhard et a. 1996), t1; = 35 ps (Eliet et al. 1995) and t1; = 80 ps
(Moulin et al. 1995). Fig. 9.3 might be helpful to prepare solutions wherein the UO,OH"
species can be detected unambiguously by suitable techniques like photoacoustic spectroscopy
or TRLFS. At present, there is no method to speciate these field samples spectroscopically,
because UV-Vis spectroscopy is not sensitive enough while the low fluorescence intensity of
U(VI) species formed in the region of interest reduces the power of TRLFS. Thus, only
indirect speciation e.g. correlation with stability field diagrams like fig. 9.3 can be provided to
characterize U(V1) field samples from most uranium mining aress.

Generally, TRLFS may become a powerful tool for direct spectroscopic speciation of U(VI)
in environmental samples. However, it is to be expected that TRLFS can not be applied as a
general method suitable for al environmental systems. Nevertheless, the promising features of
this technique will certainly attract continued interest, because the use of spectroscopy for
gpeciation of uranium(VI) in environmental samplesisjust at its beginning.
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