LINC-NIRVANA piston control and near-infrared polarization images of the Orion proplyds

Zusammenfassung

This thesis is focussed on the development of optimized techniques to overcome limitations of astrophysical observations. The goal is an optimal signal estimation in noisy measurements by the consideration of underlying physical processes. This principle was applied to two different fields in astrophysics: intrumental design and analysis of polarimetric observations. In the observational part of this thesis near-infrared images of young stellar objects in the Orion constellation are studied. Limitations in resolution and sensitivity of current astronomical instruments prohibit the detailed analysis of interesting proto-stellar sources to improve theories of star formation. Radiation from the astronomical targets is not only characterized by its spectral energy, but also by polarization properties. The modeling of typical configurations of star-disk systems and the simulation of their polarization patterns helped to understand and interprete features, that were found in observations. For the case of a proto-stellar systems with both a disk and an envelope analysis techniques were developed, which are based on polarimetric effects of the scattering of light by dust. These techniques substantially improve the sensitivity and resolution and are reliable under different observing conditions. Although the obtained data did not allow investigations of substructures of the circumstellar material, the techniques are suitable to obtain constraints on star formation processes ...
Share on:

Das Dokument erscheint in:

e-docs Suche


Erweiterte Suche

Dokumente auflisten

Mein GEO-LEO e-docs

Infos


Login