Advanced methods for analysing and modelling multivariate palaeoclimatic time series


The separation of natural and anthropogenically caused climatic changes is an important task of contemporary climate research. For this purpose, a detailed knowledge of the natural variability of the climate during warm stages is a necessary prerequisite. Beside model simulations and historical documents, this knowledge is mostly derived from analyses of so-called climatic proxy data like tree rings or sediment as well as ice cores. In order to be able to appropriately interpret such sources of palaeoclimatic information, suitable approaches of statistical modelling as well as methods of time series analysis are necessary, which are applicable to short, noisy, and non-stationary uni- and multivariate data sets. Correlations between different climatic proxy data within one or more climatological archives contain significant information about the climatic change on longer time scales. Based on an appropriate statistical decomposition of such multivariate time series, one may estimate dimensions in terms of the number of significant, linear independent components of the considered data set. In the presented work, a corresponding approach is introduced, critically discussed, and extended with respect to the analysis of palaeoclimatic time series. Temporal variations of the resulting measures allow to derive information about climatic changes ...
Share on:

Das Dokument erscheint in:

e-docs Suche

Erweiterte Suche

Dokumente auflisten

Mein GEO-LEO e-docs