GEO-LEOedocs LogoGEO-LEOedocs Logo
  • GEO-LEO
    • Deutsch
    • English
  • GEO-LEO
  • English 
    • Deutsch
    • English
  • Login
View Item 
  •   Home
  • Alle Publikationen
  • Geographie, Hydrologie
  • View Item
  •   Home
  • Alle Publikationen
  • Geographie, Hydrologie
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decadal Prediction of Marine Heatwaves in MPI‐ESM

Hövel, LauraORCIDiD
Brune, SebastianORCIDiD
Baehr, JohannaORCIDiD
DOI: https://doi.org/10.1029/2022GL099347
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10427
Supplement: http://hdl.handle.net/hdl:21.14106/f2fdc61b13828ed5284f4e4ab41e63f8a84c6e52
Hövel, Laura; Brune, Sebastian; Baehr, Johanna, 2022: Decadal Prediction of Marine Heatwaves in MPI‐ESM. In: Geophysical Research Letters, Band 49, 15, DOI: 10.1029/2022GL099347.
 
Thumbnail
View/Open
GRL_GRL64592.pdf (3.221Mb)
Metadata Export:
Endnote
BibTex
RIS
  • Abstract
Marine Heatwaves (MHW) are SST extremes that can have devastating impacts on marine ecosystems and can influence circulation patterns in the ocean and the atmosphere. Here, we present a first attempt to study the decadal predictability of MHW in an ensemble of decadal hindcasts based on the Max Planck Institute Earth System Model. For the global mean we find significant skill for the multiyear MHW trends but we cannot predict the interannual to decadal variability of MHW. In the Subpolar North Atlantic, we can predict the interannual to decadal variability of MHW days and frequency up to lead year 8. We demonstrate that in the Subpolar North Atlantic, any increase in SST is accompanied by more MHW and vice versa. Thereby we gain additional information about the decadal evolution of SST that go beyond predicting the yearly mean SST.
 
Plain Language Summary: Marine Heatwaves (MHW) are periods with extremely warm ocean temperatures that can be disruptive for many marine ecosystems. Here, we provide an attempt to predict the evolution of MHW in the global ocean for the following two to ten years. With this analysis we improve our understanding of the predictability of surface temperatures in the global ocean. We find that there are strong regional differences in the predictability of MHW. One region where MHW can be predicted successfully is the Subpolar North Atlantic. We show that an increase in mean ocean temperature also results in an increase in MHW.
 
Key Points: Global mean multiyear trends for Marine Heatwaves (MHW) days and frequency can be skillfully predicted for the following two to eight years. In the Subpolar North Atlantic, yearly characteristics MHW days and frequency are predictable up to leadyear eight. Any increase in SST in the Subpolar North Atlantic is accompanied by an increase in MHW and vice versa.
Statistik:
View Statistics
Collection
  • Geographie, Hydrologie [374]
Subjects:
Marine Heatwaves
decadal predictions
North Atlantic
extreme events
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan
 

 

Submit here
Submission hints
Search hints

All of Geo-Leo e-docsCommunities & CollectionsBy Issue DateContributorsSubjectsPeriodicalsTitlesThis CollectionBy Issue DateContributorsSubjectsPeriodicalsTitles

Statistics

View Usage Statistics

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan