GEO-LEOedocs LogoGEO-LEOedocs Logo
  • GEO-LEO
    • Deutsch
    • English
  • GEO-LEO
  • English 
    • Deutsch
    • English
  • Login
View Item 
  •   Home
  • Alle Publikationen
  • Geophysik, Extraterrestische Forschung
  • View Item
  •   Home
  • Alle Publikationen
  • Geophysik, Extraterrestische Forschung
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning

Stirnberg, RolandORCIDiD
Cermak, JanORCIDiD
Fuchs, JuliaORCIDiD
Andersen, HendrikORCIDiD
DOI: https://doi.org/10.1029/2019JD031380
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9354
Stirnberg, Roland; Cermak, Jan; Fuchs, Julia; Andersen, Hendrik, 2020: Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning. In: Journal of Geophysical Research: Atmospheres, Band 125, 4, DOI: 10.1029/2019JD031380.
 
Thumbnail
View/Open
JGRD_JGRD56054.pdf (53.53Mb)
Metadata Export:
Endnote
BibTex
RIS
  • Abstract
The quantification of factors leading to harmfully high levels of particulate matter (PM) remains challenging. This study presents a novel approach using a statistical model that is trained to predict hourly concentrations of particles smaller than 10  μm (PM10) by combining satellite-borne aerosol optical depth (AOD) with meteorological and land-use parameters. The model is shown to accurately predict PM10 (overall R 2 = 0.77, RMSE = 7.44  μg/m 3) for measurement sites in Germany. The capability of satellite observations to map and monitor surface air pollution is assessed by investigating the relationship between AOD and PM10 in the same modeling setup. Sensitivity analyses show that important drivers of modeled PM10 include multiday mean wind flow, boundary layer height (BLH), day of year (DOY), and temperature. Different mechanisms associated with elevated PM10 concentrations are identified in winter and summer. In winter, mean predictions of PM10 concentrations >35  μg/m 3 occur when BLH is below ∼500 m. Paired with multiday easterly wind flow, mean model predictions surpass 40  μg/m 3 of PM10. In summer, PM10 concentrations seemingly are less driven by meteorology, but by emission or chemical particle formation processes, which are not included in the model. The relationship between AOD and predicted PM10 concentrations depends to a large extent on ambient meteorological conditions. Results suggest that AOD can be used to assess air quality at ground level in a machine learning approach linking it with meteorological conditions.
Statistik:
View Statistics
Collection
  • Geophysik, Extraterrestische Forschung [941]
Subjects:
aerosol optical depth
air quality
PM10
machine learning
drivers of air pollution
MAIAC
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan
 

 

Submit here
Submission hints
Search hints

All of Geo-Leo e-docsCommunities & CollectionsBy Issue DateContributorsSubjectsPeriodicalsTitlesThis CollectionBy Issue DateContributorsSubjectsPeriodicalsTitles

Statistics

View Usage Statistics

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan