GEO-LEOedocs LogoGEO-LEOedocs Logo
  • GEO-LEO
    • Deutsch
    • English
  • GEO-LEO
  • English 
    • Deutsch
    • English
  • Login
View Item 
  •   Home
  • Alle Publikationen
  • Geologie
  • View Item
  •   Home
  • Alle Publikationen
  • Geologie
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian geomorphology

Korup, OliverORCIDiD
DOI: https://doi.org/10.1002/esp.4995
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9496
Korup, Oliver, 2020: Bayesian geomorphology. In: Earth Surface Processes and Landforms, DOI: 10.1002/esp.4995.
 
Thumbnail
View/Open
ESP_ESP4995.pdf (64.84Mb)
Metadata Export:
Endnote
BibTex
RIS
  • Abstract
The rapidly growing amount and diversity of data are confronting us more than ever with the need to make informed predictions under uncertainty. The adverse impacts of climate change and natural hazards also motivate our search for reliable predictions. The range of statistical techniques that geomorphologists use to tackle this challenge has been growing, but rarely involves Bayesian methods. Instead, many geomorphic models rely on estimated averages that largely miss out on the variability of form and process. Yet seemingly fixed estimates of channel heads, sediment rating curves or glacier equilibrium lines, for example, are all prone to uncertainties. Neighbouring scientific disciplines such as physics, hydrology or ecology have readily embraced Bayesian methods to fully capture and better explain such uncertainties, as the necessary computational tools have advanced greatly. The aim of this article is to introduce the Bayesian toolkit to scientists concerned with Earth surface processes and landforms, and to show how geomorphic models might benefit from probabilistic concepts. I briefly review the use of Bayesian reasoning in geomorphology, and outline the corresponding variants of regression and classification in several worked examples. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
Statistik:
View Statistics
Collection
  • Geologie [755]
Subjects:
Bayes' rule
probability
uncertainty
prediction
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan
 

 

Submit here
Submission hints
Search hints

All of Geo-Leo e-docsCommunities & CollectionsBy Issue DateContributorsSubjectsPeriodicalsTitlesThis CollectionBy Issue DateContributorsSubjectsPeriodicalsTitles

Statistics

View Usage Statistics

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan