GEO-LEOedocs LogoGEO-LEOedocs Logo
  • GEO-LEO
    • Deutsch
    • English
  • GEO-LEO
  • English 
    • Deutsch
    • English
  • Login
View Item 
  •   Home
  • Alle Publikationen
  • Geochemie, Mineralogie, Petrologie
  • View Item
  •   Home
  • Alle Publikationen
  • Geochemie, Mineralogie, Petrologie
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ptychographic X-ray speckle tracking

Morgan, Andrew J.
Quiney, Harry M.
Bajt, Saša
Chapman, Henry N.
DOI: https://doi.org/10.1107/S1600576720005567
Persistent URL: http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9181
Morgan, Andrew J.; Quiney, Harry M.; Bajt, Saša; Chapman, Henry N., 2020: Ptychographic X-ray speckle tracking. In: Journal of Applied Crystallography, Band 53, 3: 760 - 780, DOI: 10.1107/S1600576720005567.
 
Thumbnail
View/Open
JCR2_JCR2ZY5003.pdf (1.672Mb)
Metadata Export:
Endnote
BibTex
RIS
  • Abstract
A method is presented for the measurement of the phase gradient of a wavefront by tracking the relative motion of speckles in projection holograms as a sample is scanned across the wavefront. By removing the need to obtain an undistorted reference image of the sample, this method is suitable for the metrology of highly divergent wavefields. Such wavefields allow for large magnification factors that, according to current imaging capabilities, will allow for nanoradian angular sensitivity and nanoscale sample projection imaging. Both the reconstruction algorithm and the imaging geometry are nearly identical to that of ptychography, except that the sample is placed downstream of the beam focus and that no coherent propagation is explicitly accounted for. Like other X-ray speckle tracking methods, it is robust to low-coherence X-ray sources, making it suitable for laboratory-based X-ray sources. Likewise, it is robust to errors in the registered sample positions, making it suitable for X-ray free-electron laser facilities, where beam-pointing fluctuations can be problematic for wavefront metrology. A modified form of the speckle tracking approximation is also presented, based on a second-order local expansion of the Fresnel integral. This result extends the validity of the speckle tracking approximation and may be useful for similar approaches in the field.
Statistik:
View Statistics
Collection
  • Geochemie, Mineralogie, Petrologie [395]
Subjects:
X-ray speckle tracking
ptychography
phase retrieval
wavefront metrology
in-line projection holography
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan
 

 

Submit here
Submission hints
Search hints

All of Geo-Leo e-docsCommunities & CollectionsBy Issue DateContributorsSubjectsPeriodicalsTitlesThis CollectionBy Issue DateContributorsSubjectsPeriodicalsTitles

Statistics

View Usage Statistics

ImpressumPrivacy (Opt-Out)Cookie ConsentsAbout us/ContactDeposit LicenseSubmission hintsSupport: fid-geo-digi@sub.uni-goettingen.de
DFGSUBFID GEOFID Montan